
The Transport Layer Revisited

Simon Heimlicher, Rainer Baumann, Martin May and Bernhard Plattner
Computer Engineering and Networks Laboratory, ETH Zurich

8092 Zurich, Switzerland
{heimlicher,baumann,may,plattner}@tik.ee.ethz.ch

Abstract—End-to-end transport protocols such as
TCP perform poorly in mobile environments, primar-
ily due to their inability to cope with the dynamics
incurred by node mobility. We re-consider the design
decisions that lead to the end-to-end design of the
transport layer. To this end, we present a framework
for reliable hop-by-hop transport protocols. Based on
this framework, we design and evaluate such a protocol
and compare its performance to TCP. Overall, our hop-
by-hop protocol achieves up to 3 times faster delivery
of messages in our experiments with mobile networks.
We conclude that hop-by-hop protocols might be more
suitable for reliable communication in mobile networks
than end-to-end protocols.

I. Introduction

Wireless networking has become a common technology
and is used for instance in wireless mesh networks with
hundreds of nodes or in ad hoc networks comprising
just a few nodes. In these scenarios, the majority of
wireless devices are mobile. However, simulation studies
[1]–[4] show that the standard reliable transport protocol
of the Internet, TCP [5], [6], performs poorly in mobile
environments because it fails to respond appropriately
to problems at lower layers such as route failures and
link errors. Nevertheless, a large number of new transport
protocols have been proposed that are based the same
principles as TCP, i.e., they perform flow and congestion
control as well as retransmissions from the end points of
the connection. These proposals either employ a heuristic
method to distinguish link failures from congestion (e.g.
[7]) or they let intermediate nodes notify the source about
link failures (e.g. [8]). The similarity of these proposals
to TCP is in part due to the popularity of this protocol
and in part related to the view that functions should
be implemented at the highest possible layer [9] and
intermediate nodes should be stateless [10].

However, the characteristics of mobile networks are
radically different from those of classical fixed networks
because node mobility leads to frequent changes of the
network topology. The real-world measurements in [11]
support this view by showing, how short link lifetimes
are in a mobile network in an office environment. We
conclude from these works that the end-to-end paradigm
of existing transport protocols should be reconsidered for
mobile networks.

In mobile networks, it seems helpful to include the
intermediate hosts in the data transfer. Protocols where

End-to-end

Hop-by-hop

Source

Node

Destination

Node
Intermediate

Nodes

Application

Network

End-to-end Control Flow:

Congestion Control and Reliability

Hop-by-hop Control Flow:

Flow and Congestion Control

Data

Flow

Fig. 1. The framework

intermediate nodes play an active role in controlling the
forwarded data are called hop-by-hop protocols in this pa-
per. Even though the assistance of the intermediate nodes
allows for effective data transfer even when end-to-end
routes are not always available, only few such transport
protocols have been proposed to date. One example is
Split TCP [12], which splits long connections at certain
intermediate nodes. A more recent example, the Delay
Tolerant Networking group [13] also considers hop-by-hop
transport mechanisms (Bundling), but the responsibility
for reliability is delegated to intermediate nodes (custodial
transfer).

Due to the lack of research on hop-by-hop transport
protocols, we have developed a framework for hop-by-
hop transport protocols. This framework provides flow
control, congestion control, and end-to-end reliability. In
simulation studies, we show that a hop-by-hop transport
protocol performs much better in mobile networks than
the standard end-to-end protocol, TCP NewReno.

We then analyze in simple, static scenarios, what the
reason for this considerable performance increase is. Our
results show that an end-to-end transport protocol is fun-
damentally limited in its performance under circumstances
where packet loss is high and route lifetimes are low.

In brief, the main contributions of this paper are:

• We analyze the fundamental advantages of hop-by-
hop transport protocols in mobile networks as follows:

• We design and implementat a framework for hop-by-
hop transport protocols; and

• We evaluate the performance of a protocol pro-
vided by this framework and compare it with TCP
NewReno in both mobile and static scenarios.

The rest of this paper is organized as follows. In the
next section, we describe our hop-by-hop framework. We
discuss its key features, i.e., reliable data transfer in net-
works with high packet loss and frequent route failures, in
Section III. In Section IV, we present a simulation study of
hop-by-hop and end-to-end transport in a mobile network
and analyze, why the hop-by-hop approach performs so
much better. In Section V, we discuss related work. We
conclude and discuss future steps in Section VI.

II. The Framework

As discussed in Section V, primary causes of poor
TCP performance in mobile networks are packet loss,
route changes, and route failures. Consequently, the design
goal of our framework is to overcome the limitations of
traditional end-to-end transport protocols such as TCP
and to (i) provide resilience to highly dynamic network
conditions; (ii) enable transmission over intermittent end-
to-end routes; and (iii) minimize end-to-end control traffic.

From an application perspective, the framework pro-
vides a reliable byte stream over a highly dynamic and
unreliable network topology. The only requirement on the
routing protocol is, that it provides the next hop to the
destination if a route is available. Note that our framework
allows multiple connections between a pair of hosts by
providing a demultiplexing identifier, similar to the port
number of TCP.

The framework is implemented on two sublayers, as
shown in Figure 1. The hop-by-hop layer runs on every
node and provides per-link flow control and congestion
control. On this layer, data is managed in units of frag-
ments, which only comprise a few IP packets to allow for
fine-grained control over the hop-by-hop data transmis-
sion. The end-to-end layer operates at the end points of
the connection. It performs global congestion control and
guarantees reliable data delivery. This layer thus provides
a reliable-byte-stream interface to the application-layer,
just like TCP. Data is managed as segments, which are
data units comprising a few fragments.

Since the framework is designed for networks with inter-
mittent end-to-end routes, it does not have a connection
establishment phase. When a node has data to send,
it waits until the routing protocol provides it with the
address of the next hop to the destination and then
immediately begins to transfer. The end-to-end congestion
control algorithm ensures, that if the route becomes un-
available, the transmission is interrupted when the end-to-
end congestion control window is exhausted (see below).

Our framework accomplishes the three fundamen-
tal tasks of a reliable transport protocol—end-to-end
reliability, flow control, and congestion avoidance—
independently. In the next sections, we will briefly discuss
the mechanisms that provide these functions.

A. End-to-end Reliability

In a network of unreliable nodes, end-to-end reliability
can only be ensured by the end points of the connection;

therefore, an end-to-end retransmission mechanism is pro-
vided at the end-to-end layer of the framework. Should
no acknowledgement be received for transmitted data,
un-acknowledged data is retransmitted by the source,
respecting an exponentially increasing back-off interval.

B. Flow Control

Protocols following the hop-by-hop principle are able to
control every link along the route separately. This is a clear
advantage over end-to-end protocols in mobile networks.
Our framework offers a rate-based flow control algorithm
that runs at the sending side of each link. The receiver
informs the sender about the fill state of its buffer in every
acknowledgment packet to avoid unnecessary data trans-
mission. The sender estimates an accurate sending rate
based on the measuremed transfer time of each fragment
with the same algorithm that TCP uses to calculate its
roundtrip timeout. This estimated rate is shared among all
connections that use the same next hop, leading to higher
fairness and utility of links, as discussed later.

C. Congestion Avoidance

Our framework provides both a hop-by-hop and an end-
to-end congestion control mechanism. These mechanisms
counter two different problems: The hop-by-hop conges-
tion control algorithm limits the number of fragments that
the source and any intermediate host is allowed to send
to its next hop in order to avoid transmissions to nodes
that have moved away. Since not all fragments have to
travel the same route, the hop-by-hop congestion control
mechanism merely counts, how many fragments it has sent
to a particular node and ignores their sequence numbers.
In order to avoid deadlocks, the mechanism operates on a
per-node basis, i.e., when the next hop changes, the sender
is allowed to transmit a full fragment window’s worth of
data to the new next hop. Furthermore, retransmissios of
failed fragments are prioritized.

The end-to-end congestion control mechanism has a job
similar to the congestion control algorithm of TCP: it
limits the number of un-acknowledged segments on a per-
connection basis. It only runs at the source and enforces a
hard limit on the total amount of unacknowledged data
allowed into the network on behalf of each connection.
Moreover, if no acknowledgement is received for a segment
for a certain period, the source needs to retransmit the seg-
ment. Since a segment retransmission incurs a heavy load
on the network, the source adopts an exponential back-
off. As shown in [14], an exponential back-off guarantees
that the system remains stable. Furthermore, exponential
back-off allows fair co-existence of our protocol with other
transport protocols such as TCP.

III. Discussion

Compared to classical packet forwarding, hop-by-hop
protocols require additional processing power and memory
for cross connections at every intermediate node because

fragments that could not be delivered to the next hop are
stored on intermediate nodes and retransmitted a certain
number of times. In order to limit these requirements, the
amount of buffer space is tightly bounded by the con-
gestion control mechanisms discussed above. For instance,
with the settings we use in our simulation experiments (cf.
Section IV), the buffer space used on an intermediate node
is less than 100kB per connection. If less space is available,
the performance degrades gracefully; our framework can
run with as little as one packet size of buffer space, which
is typically around 1kB.

As a performance improvement, intermediate nodes
with free buffer space may cache the most recently received
fragments for a limited period of time. This allows to save
bandwidth in the case of retransmissions, as follows. If a
node receives a packet that belongs to a fragment that it
has cached already, the receiver acknowledges the fragment
to the sender and begins retransmission of this fragment
towards the destination upon receipt of the first packet of
the fragment.

The performance of the hop-by-hop transfer of frag-
ments is largely determined by the transmission rate and
the retransmission timeout (RTO). Only accurate and
up-to-date measurements of the fragment transfer time
allow a node to transmit at the correct rate and to avoid
premature retransmission. With our framework, a node
shares this data among all connections that use the same
next hop, allowing all these connections to always operate
with the most recent information.

In order to provide better service to connections that
involve multiple hops, our framework provides a tunable
interface scheduling algorithm that manages, which con-
nection is allowed to transmit. In our experience, it is
a good compromise to allocate the same share of time
to every connection, thus allowing connections that send
at high data rates to transmit more data than slower
ones. This scheduling provides much better fairness and
higher throughput for multi-hop connections than the
preference for short connections of TCP, as will be shown
in Section IV.

In the remainder of the section, we discuss how the
framework provides resilience against packet loss, route
changes, and route failures.

A. Packet Loss

Since the framework provides a hop-by-hop protocol, it
handles packet losses locally. That is, if a packet is lost on
any intermediate link, the node at the receiving side will
not acknowledge the corresponding fragment and the last
hop will retransmit the fragment. If a fragment acknowl-
edgment packet is lost and a fragment is retransmitted
even though the receiver has it in its cache already, the
receiver immediately sends an ACK to the sender upon
receiving the first packet of the fragment. In addition,
every fragment ACK contains the sequence numbers of
the last few received fragments. Thus, in general, a frag-

ment can be acknowledged by multiple independent ACK
packets. As a result, the resilience of the acknowledgment
mechanism against packet loss is dramatically increased at
a very low cost in terms of transmission overhead.

TCP uses cumulative acknowledgment to achieve the
same goal. However, with our protocol, consecutive frag-
ments may travel different paths and thus cumulative
acknowledgement is not applicable for fragments.

It might be argued, that local retransmission is already
provided by most MAC layer protocols and should not
be duplicated at a higher layer. However, as only the
transport layer protocol has knowledge about the final
destination of every data packet, it is able to retransmit
the packet to a different next hop when recovering from a
link failure; note that this cannot be accomplished by the
MAC layer protocol.

B. Route Changes

In order to avoid stale packets from congesting the
network, every data and ACK packet contains a so-called
final acknowledgment number, i.e, the sequence number of
the last fragment received in sequence at the destination.
Whenever a node receives a higher final acknowledgment
number, it updates its status and flushes all fragments
with lower sequence numbers. This effectively controls the
cache sizes at intermediate nodes and provides a redundant
acknowledgment channel from the destination back to the
source.

C. Route Failures

Current ad hoc routing protocols, such as AODV [15]
and DSR [16], strive to provide either an end-to-end
route or no route at all. As soon as a packet is lost,
all routes using the unreliable link are considered to be
down. Since hop-by-hop protocols do not depend on end-
to-end routes, this functionality is counterproductive. The
framework provides a route caching mechanism, allowing
it to continue to use invalid routes for a specifiable period
if the link to the next hop is up.

IV. Evaluation

In this section, we evaluate the performance of a spe-
cific instance of a hop-by-hop transport protocol that we
developed with our framework. We compare our hop-by-
hop transport protocol with TCP NewReno [6], which is
the latest version of the most popular end-to-end transport
protocol. First, we study the performance of a messaging
application in a network of mobile nodes. Subsequently, we
analyze both protocols in a static multi-hop scenario in or-
der to determine, which characteristics of the hop-by-hop
protocol are responsible for its much higher performance
compared to the end-to-end protocol.

A. Simulation Environment

We use the network simulator “ns-2” [17] for all exper-
iments. The distributed coordination function (DCF) of
IEEE 802.11 [18] is used at the MAC layer. The 802.11

0

 20 30 40 50

 10

 20

 30

A
rr

iv
al

 T
im

e
[m

in
u

te
s]

Number of nodes

End-to-end

Hop-by-hop

Fig. 2. Mobile network. Average message arrival time vs. number of nodes.

 20 30 40 50

 0

 30

 60

 90

 120

 150

 180

M
ax

im
al

 a
rr

iv
al

 t
im

e
[m

in
u
te

s]

Number of nodes

End-to-end

Hop-by-hop

Fig. 3. Mobile network. Maximal message arrival time vs. number of nodes.

DCF uses an RTS/CTS handshake for unicast transmis-
sions to neighboring nodes for packets larger than a given
threshold (set to 512 bytes). Broadcast data packets and
the RTS/CTS control packets are sent using an un-slotted
CSMA technique with collision avoidance (CSMA/CA).
The radio model uses characteristics similar to a com-
mercial radio interface, Lucent’s “WaveLAN” card. All
nodes run the AODV [15] routing protocol, specifically
the “AODV-UU” [19] implementation for ns-2. We com-
pare our hop-by-hop protocol with TCP NewReno [6], as
implemented in the ns-2 “TCP/FullTcp/Newreno” agent.
We use an FTP application with a packet size of 1000
bytes.

1) Parameters: There are a few parameters to be set
in our framework. The most important ones are the seg-
ment and fragment sizes. Learned from some preliminary
experiments, we set the segment length to 4 fragments
and fragment length to 8 packets in all experiments. This
results in a segment size of 32kB and a fragment size of
8kB.

B. Mobile Network

We show an example scenario of a messaging application
in a mobile network. In an area of 1000m × 3000m,
nodes move according to the Random-waypoint model

[16]. Every node chooses a random point and a speed of 1–
10m/sec. It then moves to this point and chooses the next
waypoint, and so on. (We are aware of the discrepancy
of random-waypoint mobility and real human mobility.
Nevertheless, we consider this model to be a reasonable
benchmark for the protocols under examination.) The con-
nection pattern is as follows: 10 pairs of nodes are chosen
randomly. One node of every pair sends 10 messages of
100kB to its peer at uniformly distributed points in time
during the first 100 seconds. Hence, the total amount of
data to be transferred by the network is 10’000kB.

We run experiments for network sizes of 20, 30, 40, and
50 nodes and measure the time until all messages have
arrived at the receivers. The average and the maximum
values from 50 differently seeded runs of these experi-
ments are plotted in Figure 2 and Figure 3, respectively.
With our protocol, the average arrival time is almost
independent of the number of nodes. In contrast, TCP
performs poorly with less than 40 nodes. For instance in
the example network with 30 nodes, it takes 17 minutes
for all messages to arrive at the destination nodes with the
end-to-end protocol TCP. With our hop-by-hop protocol,
all connections finish already after 7 minutes.

In order to show the different behavior of the two
approaches, we examine the plot from a randomly chosen

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

P
ro

g
re

ss
 [

%
]

Time [s]

Connections

10

9

8

7

6

5

4

3

2

1

Total

(a) End-to-end

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

P
ro

g
re

ss
 [

%
]

Time [s]

Connections

10

9

8

7

6

5

4

3

2

1

Total

(b) Hop-by-hop

Fig. 4. Mobile network. Progress of each connection.

scenario with 30 nodes. In Figure 4, the progress of the 10
connections is plotted. These plots show, how the volume
of data received by the destination nodes increases over
time. With TCP (cf. Figure 4(a)), it takes up to one hour
for all messages to arrive at the destination nodes. With
our protocol, all connections finish within one quarter of
the time (cf. Figure 4(b).

Furthermore, it is obvious, that the progress of the
data transfer with the hop-by-hop protocol is much more
steady than with TCP. Our analysis of the trace files has

shown that TCP transmits data primarily over single-
hop connections, and typically, only one connection is
transmitting at a time. In contrast, our protocol uses
multi-hop routes, sharing the limited bandwidth much
more fairly among multiple connections.

Additionally, the hop-by-hop protocol starts to transmit
data much earlier than TCP. The late start of TCP is
in part due to the frequent pseudo route failures that
occur with this protocol. Such failures are not due to node
mobility but are caused by TCP’s bandwith probing mech-

200m ...

A B C D E F

1

2

3

(a) Scenario

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 0 200 400 600 800 1000

V
o
lu

m
e

p
er

 c
o
n
n
ec

ti
o
n
 [

B
]

Time [s]

Connections

3

2

1

(b) End-to-end

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 0 200 400 600 800 1000

V
o

lu
m

e
p

er
 c

o
n

n
ec

ti
o

n
 [

B
]

Time [s]

Connections

3

2

1

(c) Hop-by-hop

Fig. 5. Multiple connections sharing a collision domain. Volume transferred vs. time.

anism. As explained in Section II, our hop-by-hop protocol
estimates the optimal retransmission timeout and sending
rate on every link individually, and multiple connections
that use the same next hop share these estimates.

From this experiment, we conclude that the hop-by-
hop approach is particularly well suited for networks with
low node density, i.e., for networks where connections are
intermittent.

In the next section, we will have a closer look at
the behavior of TCP and our hop-by-hop protocol in a
static scenario where multiple connections run through one
collision domain.

C. Analysis

The static scenario serves to analyze the specific char-
acteristics of our hop-by-hop approach in an observable
environment. Since bandwidth is the limiting resource in
wireless networks, we are particularly interested in the
behavior of TCP and our protocol when it comes to
sharing this resource among multiple connections. It is well
known that when several TCP connections share one link,
TCP devotes considerably more bandwidth to connections
with lower RTTs (cf. [12]). We examined the behavior
of TCP and our hop-by-hop protocol in the following
scenario: six nodes are placed in a row with a distance
of 200m. Three connections are in place, as shown in
Figure 5(a). The first connection spans all five hops, the
second one crosses four hops and the third connection only
runs over three hops.

For every connection, we plot the amount of trans-
mitted data over time. The results of TCP are shown
in Figure 5(b). While the three-hop connection transfers
about 15MB in 1000s, the longer connections only obtain
a share of around 2MB each. As can be seen, connection
2 starts transmitting after around 4 minutes. The analysis
of the trace files reveals that the source node B only finds
a route to its destination F at this time. Apparently, the
AODV routing protocol has great difficulty to establish
this route due to the heavy use of the middle section of the
route by the other two connections. At around t = 268s,
the route is lost and re-established at t = 401s.

With our hop-by-hop appraoach, the bandwidth of
the shared links is allocated more equally, as shown in
Figure 5(c). There are no apparent periods with zero
throughput, and the achieved performance of every con-
nection is directly related to the number of hops it has to
cross. Since the end-to-end congestion control mechanism
of our protocol applies the same limits to all connec-
tions, the source of the six-hop connection has to wait
for acknowledgement packets more frequently than the
source of the three-hop connection. While this reduces the
transmission rate of long connections, it allows for a higher
total throughput of the network.

V. Related Work

The standard reliable transport protocol of the Internet,
TCP (transmission control protocol) [5], is the most widely
used reliable transport protocol of today. However, TCP

was designed for wired networks with stable topology, and
extended analysis of its performance in mobile networks
([1], [3], [4]) has revealed that TCP is not suitable for
such environments. TCP fails to respond appropriately to
problems at lower layers such as route failures and link
errors. Consequently, a number of modifications to the
primary TCP mechanisms have been proposed to address
these problems.

In [2] (TCP-ELFN), an Explicit Link Failure Notifi-
cation (ELFN) technique is proposed, based on direct
feedback about link and route failures from intermediate
nodes to the sender. A quite similar approach is proposed
in [20] (TCP-F). Another proposed protocol called ATCP
[21] tries to solve this problem utilizing network layer
feedback.

While the aforementioned approaches rely on cooper-
ation and feedback control messages from lower layers,
[22] employs a heuristic technique to distinguish route
failures and congestion. When timeouts occur due to
unacknowledged data packets, the retransmission timeout
(RTO) is not doubled. With this method, the authors
tried to alleviate large timeouts at the sender that degrade
TCP performance. Analogous approaches are proposed in
[23] (TCP-DOOR), and [7] (TCP-PR) where out-of-order
delivery of data packets at the destination or acknowl-
edgement messages sent back to the sender are used as
an indication of route failures.

A recently published TCP-related protocol is the Trans-
port Protocol for ad hoc Networks (TPA) [24]. TPA em-
ploys a similar congestion control mechanism as TCP, but
introduces a novel retransmission mechanism. This mech-
anism first delays retransmissions and continues to send
new packets, which increases the chance that a delayed
acknowledgement arrives before the corresponding packet
is retransmitted unnecessarily. However, the TPA protocol
is only evaluated in a static scenario (six nodes in a row).
In this basic setting, TCP exhibits good performance, but
TPA achieves a slightly higher throughput while requiring
a lower number of packet retransmissions. If background
traffic across the three central hops of the topology is
added, TPA largely outperforms TCP and only requires a
fraction of the number of retransmissions of TCP, resulting
in higher bandwdith efficiency.

The TCP-variant protocols cited above improve the
performance of TCP in certain types of mobile networks,
but since these protocols are limited to operate at the end
points of the connection, their performance depends to a
large extent on the availability of end-to-end routes. Par-
ticularly, when route failures occur, routing protocols are
recalculating complete routes from a sender to a destina-
tion. This procedure is time-consuming and degrades TCP
performance as nodes remain inactive for large periods of
time.

The Ad hoc Transport Protocol (ATP) [8] is a recently
published transport protocol that operates mainly end-to-
end, but differs fundamentally from TCP in that it uses

rate-based flow control based on feedback from intermedi-
ate nodes. This protocol depends not only on information
from the routing protocol, but also from lower layers
for the detection, avoidance and control of congestion,
estimation of a reasonable transmission rate, and detection
of route failures. The intermediate nodes attach congestion
information to every ATP packet, and the corresponding
ATP receiver is responsible to send the accumulated in-
formation back to the sender in the next ACK packet.
In stark contrast, our hop-by-hop transport protocol only
requires minimal cross-layer information, i.e., the address
of the next hop to the destination.

To our knowledge, not many transport protocols were
proposed that operate hop-by-hop. One notable proposal
is Split TCP [12]. The authors of this proposal found
that in mobile networks, long (multi-hop) TCP connec-
tions suffer severely from route failures due to mobility.
They propose a scheme that separates long connections at
certain intermediate nodes (so-called proxies) into shorter
segments. If a node is a proxy, it buffers TCP packets
and acknowledges them to the previous proxy with a local
acknowledgement packet. The buffered packets are then
forwarded as usual and buffered again at the next proxy.
To guarantee end-to-end reliability, the destination node
sends an acknowledgement back to the source. The basic
operation principle of our framework is similar to the one
of Split TCP. However, our framework is dedicated to be
resilient against route changes, failures, and high packet
loss rate. By sharing the most recent measurements of the
link properties among connections, our protocol needs less
probing, and as a result, achieves higher efficiency.

The Delay Tolerant Networking group [25] is a research
project that considers hop-by-hop transport mechanisms.
In its extreme case [13], the authors consider the network
as an interplanetary Internet. However, Bundling, [26]
their hop-by-hop transport protocol, does not replace TCP
but is rather an intermediate layer between an existing
transport protocol and the application layer. Its task is
to deliver a bunch of packets (called Bundle) to the
destination. Due to the assumption that some of the
underlying connections are episodic, intermediate hosts
are required to buffer all incoming bundles until they
have been forwarded successfully (custodial transfer). The
Bundling protocol is thus unsuitable for the networks we
target in this paper where intermediate nodes are battery-
driven and not reliable.

The Haggle project [27] is exploring a network model
where user mobility is used to disseminate data and
these networks are called pocket-switched networks [28].
Applications are assumed to be delay-tolerant and end-
to-end connectivity intermittent. Since messages are not
acknowledged by the destination, no reliability can be
provided. Rather, Haggle is exploring ways of commu-
nicating effectively with minimal requirements regarding
connectivity and control overhead.

VI. Conclusion

In this paper, we address the problem of reliable data
transfer in wireless mobile networks. It has been shown
in related studies that classical end-to-end protocols that
were designed for fixed networks do not run as smoothly in
such environments. Consequently, we consider alternative
approaches in our work.

Specifically, we have developed a framework that allows
to design, analyze, and evaluate transport protocols fol-
lowing the hop-by-hop principle. This framework provides
protocols that guarantee end-to-end reliability, flow con-
trol, and congestion control at a very low cost in terms of
memory and bandwidth overhead.

In order to evaluate the performance of the hop-by-
hop approach, we have compared a protocol simulated
by our framework with a traditional end-to-end transport
protocol in a mobile network. We have found that hop-
by-hop protocols lead to up to three times faster delivery
of data while at the same time sharing communication
resources much more fairly among single and multi-hop
connections.

Our further investigation in static environments has
shown that the performance advantage of our hop-by-
hop protocol is due to three features inherent to the hop-
by-hop principle: (i) the precise control it can exert on
every single link of the end-to-end path, (ii) its ability to
recover from packet loss locally, and (iii) its lower end-to-
end communication overhead.

We believe that the performance improvement of our
hop-by-hop protocol justifies the newly introduced over-
head in terms of computing and memory efforts at inter-
mediate nodes. Moreover, a hop-by-hop transport protocol
offers opportunities to develop new applications for mobile
networks.

References

[1] M. Gerla, K. Tang, and R. Bagrodia, “TCP Performance in
Wireless Multi-hop Networks,” in Proceedings of IEEE Work-
shop on Mobile Computing Systems and Applications (WM-
CSA’99), February 1999.

[2] G. Holland and N. H. Vaidya, “Analysis of TCP Performance
over Mobile Ad Hoc Networks,” in MobiCom ’99, August 1999.

[3] T. Dyer and R. Boppana, “A Comparison of TCP Performance
over Three Routing Protocols for Mobile Ad-hoc Networks,”
in Proceedings of the ACM Symposium on Mobile Ad Hoc
Networking and Computing (MOBIHOC 2001), October 2001.

[4] Z. Fu, X. Meng, and S. Lu, “How Bad TCP Can Perform
in Mobile Ad Hoc Networks,” in IEEE Seventh International
Symposium on Computers and Communications (ISCC’02),
July 2002.

[5] J. Postel, “Transmission Control Protocol,” RFC 793
(Standard), Sept. 1981, updated by RFC 3168. [Online].
Available: http://www.ietf.org/rfc/rfc793.txt

[6] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno
Modification to TCP’s Fast Recovery Algorithm,” RFC
3782 (Proposed Standard), Apr. 2004. [Online]. Available:
http://www.ietf.org/rfc/rfc3782.txt

[7] S. Bohacek, J. Hespanha, J. Lee, C. Lim, and K. Obraczka,
“TCP-PR: TCP for Persistent Packet Reordering,” in Proceed-
ings of the IEEE 23rd International Conference on Distributed
Computing Systems (ICDS 2003), May 2003, pp. 222–231.

[8] K. Sundaresan, V. Anantharaman, H.-Y. Hsieh, and R. Sivaku-
mar, “ATP: A Reliable Transport Protocol for Ad-hoc Net-
works,” in Proceedings of the ACM Symposium on Mobile Ad
Hoc Networking and Computing (MOBIHOC 2003), June 2003.

[9] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-To-End Argu-
ments in System Design,” in ACM Transactions on Computer
Systems, November 1984.

[10] D. D. Clark, “The Design Philosophy of the DARPA Internet
Protocols,” in Proceedings of the ACM Symposium on Commu-
nications Architectures and Protocols (SIGCOMM ’88), August
1988, pp. 106–114.

[11] V. Lenders, J. Wagner, and M. May, “Analyzing the Impact of
Mobility in Ad Hoc Networks,” in ACM/Sigmobile Workshop
on Multi-hop Ad Hoc Networks: from Theory to Reality (REAL-
MAN), Florence, Italy, May 2006.

[12] S. Kopparty, S. Krishnamurthy, M. Faloutsos, and S. Tripathi,
“Split TCP for Mobile Ad Hoc Networks,” in Proceedings of
the IEEE Global Communications Conference (GLOBECOM
2002), November 2002.

[13] S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V. Cerf, B. Durst,
K. Scott, and H. Weiss, “Delay-Tolerant Networking: An Ap-
proach to Interplanetary Internet,” IEEE Communications
Magazine, June 2003.

[14] V. Jacobson and M. Karels, “Congestion Avoidance and
Control,” in Proceedings of the ACM Symposium on
Communications Architectures and Protocols (SIGCOMM
’88), August 1988, pp. 314–329. [Online]. Available:
citeseer.ist.psu.edu/654992.html

[15] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand
Distance Vector (AODV) Routing,” RFC 3561 (Experimental),
July 2003. [Online]. Available: http://www.ietf.org/rfc/rfc3561.
txt

[16] D. B. Johnson, D. A. Maltz, Y.-C. Hu, and J. G. Jetcheva, “The
Dynamic Source Routing Protocol for Mobile Ad Hoc Networks
(DSR),” Internet Draft, IETF, February 2002.

[17] “Network Simulator ns-2,” source code available: http://www.
isi.edu/nsnam/ns/.

[18] “Wireless LAN medium access control (MAC) and physical layer
(PHY) specifications, IEEE standard 802.11–1997,” 1997.

[19] “University of Uppsala AODV implementatioin—AODV-
UU,” source code available: http://core.it.uu.se/AdHoc/
ImplementationPortal.

[20] K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash,
“A Feedback Based Scheme for Improving TCP Performance in
Ad-hoc Wireless Networks,” in Proceedings of the International
Conference on Distributed Computing Systems (ICDCS’98),
May 1998.

[21] J. Liu and S. Singh, “ATCP: TCP for Mobile Ad hoc Networks,”
IEEE Journal on Selected Areas of Communication (JSAC),
April 2001.

[22] M. Zhang, B. Karp, and S. Floyd, “RR-TCP: A Reordering-
Robust TCP with DSACK,”ICSI—International Computer Sci-
ence Institute at Berkeley, CA, Tech. Rep. TR-02-006, July
2002.

[23] F. Wang and Y. Zhang, “Improving TCP Performance over
Mobile Ad-Hoc Networks with Out-of-Order Detection and
Response,” in Proceedings of the ACM Symposium on Mobile
Ad Hoc Networking and Computing (MOBIHOC 2002), June
2002.

[24] E. Ancillotti, G. Anastasi, M. Conti, and A. Passarella,“TPA: A
Transport Protocol for Ad hoc Networks,” in Proceedings of the
Tenth IEEE Symposium on Computers and Communications
(ISCC 2005), June 2005, pp. 27–30.

[25] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, J. Scott,
K. Fall, and H. Weiss, “Delay tolerant network architecture,”
Mar. 2007.

[26] K. Scott and S. Burleigh, “Bundle protocol specification,” Aug.
2006.

[27] “The Haggle Project,” http://www.haggleproject.org/.
[28] P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, and

C. Diot, “Pocket switched networks and human mobility in
conference environments,” in WDTN ’05: Proceeding of the 2005
ACM SIGCOMM workshop on Delay-tolerant networking, 2005.

