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ABSTRACT
In many practical scenarios, nodes gathering at points of interest
yield sizable connected components (clusters), which sometimes
comprise the majority of nodes. While recent analysis of mobile
networks focused on the process governing node encounters (“con-
tacts”), this model is not particularly suitable for gathering behav-
ior. In this paper, we propose a model of stochastic coalescence
(merge) and fragmentation (split) of clusters. We implement this
process as a Markov chain and derive analytically the exact station-
ary distribution of cluster size. Further, we prove that, as the num-
ber of nodes grows, the clustering behavior converges to a mean
field, which is obtained as a closed-form expression. This expres-
sion translates the empirical merge and split rate of a scenario, a
microscopic property, to an important macroscopic property—the
cluster size distribution—with surprising accuracy. We validate all
results with synthetic as well as real-world mobility traces from
conference visitors and taxicabs with several thousand nodes.

1. INTRODUCTION
Up to now, the analysis of mobile networks was predominantly

based on modeling individual nodes or node encounters. In partic-
ular, research on delay-tolerant networks (DTN) made progress in
characterizing the stochastic process underlying single-hop paths
(“contacts”) and leveraging emerging “space-time paths” for com-
munication in a disconnected network. Those studies laid an im-
portant foundation toward understanding the temporal characteris-
tics of contacts and designing contact-based forwarding schemes
for delay-tolerant applications tailor-made for those networks.

Yet, we argue that in addition to space-time paths, multi-hop
paths may often exist in mobile wireless networks. Such multi-
hop paths may enable some of the most popular applications, such
as web browsing and email, in mobile wireless networks, even
though the protocols used by those applications (in particular TCP
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[19]) have not been designed to be delay-tolerant. We argue that
understanding the circumstances that lead to multi-hop paths is
paramount to design routing and forwarding algorithms that lever-
age those communication opportunities. In our discussion, we dis-
tinguish between partial paths, which bridge only part of the way
from the source to the destination, and full paths connecting source
and destination; and we use the term partially-connected network
to refer to a network that is disconnected but provides partial paths.

Following those definitions, one may ask if disconnected net-
works with partial paths exist. Continuum percolation theory [12]
is often used to study connectivity; its main result is that if the node
density is below the percolation threshold, almost all nodes are iso-
lated; above the threshold, the network “percolates” and forms one
giant connected component. Yet, [32] shows that in clustered net-
works, such a phase transition does not occur. In delay-tolerant net-
working, characterization of the contact process [9, 15] is mostly
concerned with forwarding based on individual contacts, though
there are proposals to leverage multi-hop paths [28] as well.

In light of this, to analyze rigorously the existence and charac-
teristics of partial paths, a new methodology seems in order. Node
independence is at the core of most analytical models for mobile
networks, but multi-hop paths are at odds with this assumption.
Fortunately, if the behavior of individual nodes is abstracted from,
the dependency between nodes on a multi-hop path can be hidden.
Under this premise, one could consider multi-hop paths as the ba-
sic entities, but those may still be connected to each other. There-
fore we propose to lump together all connected multi-hop paths
to connected components (clusters) and describe a mobile scenario
through merge and split events between such clusters.

In this paper, we introduce a model for arbitrary mobile wire-
less networks based on the concept of stochastic coagulation and
fragmentation [2]. In analogy to globs of particles coalescing and
fragmenting in a system of particles in a solvent, we describe a sys-
tem of N mobile nodes as a set of clusters that merge and split.
The state of the system is represented by a vector whose elements
i = 1, 2, . . . are the number of clusters of size i. As N is constant,
two primitive events may occur in this system. First, two clusters
of sizes k and l may merge into a new cluster of size k + l, as de-
scribed by the merge process. Second, a cluster of size k + l may
split into two clusters of sizes k and l, according to the split pro-
cess. It follows that the merge and the split process determine the
stationary distribution of cluster size and thus, whether the network
is connected, disconnected, or partially connected by partial paths.



We implement this model as a Markov process over the finite
state space of all partitions ofN . Under certain conditions, this pro-
cess is reversible and thus its stationary distribution (corresponding
to the distribution of cluster size) is obtained in closed form. Fur-
thermore, we prove that the behavior of the merge–split process
converges to a mean field for large numbers of nodes,N . The mean
field is obtained in closed form and provides a remarkably precise
approximation even for realistic networks with finite numbers of
nodes. Indeed, with increasing numbers of nodes, numerical errors
undermine computation of the exact distribution and the mean field
approximation may be preferable for large networks.

Since the versatility of the merge–split model may not be appar-
ent, we also aim to illustrate applications to the extent space per-
mits. The mean field approximation intuitively translates through a
simple expression a microscopic property—–the three parameters
of the merge-split process—–to the macroscopic cluster size dis-
tribution. Thus, our analysis characterizes mobile network scenar-
ios uniquely by these three parameters and provides an accessible
interpretation through the cluster size distribution. In particular,
this also indicates to what extent a scenario provides partial paths,
which gives important insights into the structure of the network
and in particular its suitability for contact-based [21], hop-by-hop,
or end-to-end forwarding [17] schemes.

The prediction quality of the mean field approximation as well as
the exact distribution are validated against random walk simulation
as well as mobility traces. We use traces from conference visitors
and taxicabs in San Francisco and Shanghai. More specifically, we
extract the merge and the split rate from these scenarios and then
derive the cluster size distribution using both our exact analytical
solution and the mean field approximation. The exact result yields
a remarkably precise prediction; the mean field approximation by
its nature gives a reliable prediction of the shape of the distribution;
in particular it predicts whether giant components emerge.

The characterization of mobile networks via the stationary dis-
tribution we present in this paper is the first of several applications
of the merge–split process; we outline further results at the end of
this paper.

The contributions we present in this paper are as follows.

• We introduce a Markov process modeling merge and split
behavior of connected components (clusters) in mobile wire-
less networks;

• we derive analytically its stationary distribution, correspond-
ing to the distribution of cluster size;

• we prove the convergence of the stationary distribution to a
mean field behavior with increasing number of nodes,

• the mean field approximation is a closed-form expression
that translates the microscopic behavior (merge–split pro-
cess) to an important macroscopic property, the cluster size
distribution;

• we validate the quality of the prediction of cluster size distri-
bution (exact derivation and mean field approximation) against
random walk mobility and three real-world traces.

In the next section, we introduce the merge–split model and prove
its convergence to a mean field behavior; we further outline the
calibration of the model with empirical data. We validate the ex-
act derivation as well as the mean field approximation in Sec. 3 by
comparing the predicted against the empirical cluster size distri-
bution in synthetic and real-world mobility traces. In Sec. 4, we
discuss our contributions vis-a-vis related work. Finally, in Sec. 5

we conclude the paper, giving a preview of results that are to be
published, as well as other future work.

2. ANALYTIC FORMULATION
In this section we describe the analytical model we use through-

out. We then analyze its convergence to a mean field behavior in
Sec. 2.2. Finally, Sec. 2.3 describes how the model can be cali-
brated to match an empirical dataset and discusses the effect of its
parameters.

2.1 Finite size system formulation
We describe an arbitrary mobile network as a system of N in-

teracting nodes. At every time t, a node is in exactly one cluster,
i.e., it is member of a set of nodes that are connected by a full path
at time t. The state of the system is described by the cluster size
vector (νN (1, t), νN (2, t), . . . , νN (N, t)) with elements νN (i, t)
representing the number of clusters of size i at time t. We consider
two primitive interactions between these nodes.

1. Merge reaction: A cluster of k nodes merges with a cluster
of l nodes, yielding a cluster of k + l nodes:

Ck + Cl → Ck+l.

This reaction is also called coalescence and happens at a rate
ψN (k, l), which is assumed to be symmetric, i.e., ψN (k, l) =
ψN (l, k). A merge reaction of clusters of sizes k and l has
the following drift effect on the cluster size vector:
(. . . , νN (k, t)−1, . . . , νN (l, t)−1, . . . , νN (k+l, t)+1, . . .).

2. Split reaction: A cluster of size l splits into two clusters of
sizes k, (k < l) and l − k:

Cl → Ck + Cl−k.

This reaction is also called fragmentation and happens at a
rate φN (l|k) and we assume φN (l|k) = φN (l|l−k). A split
reaction of a cluster of size l into two clusters of sizes l − k
and k has the below drift effect on the cluster size vector:
(. . . , νN (l−k, t)+1, . . . , νN (k, t)+1, . . . , νN (l, t)−1, . . .).

We call such a process a merge–split process. These reactions hap-
pens subject to the node conservation condition:

N∑
k=1

kνN (k, t) = N,∀t ≤ 0. (1)

This defines a Markov process over the finite state space Ω =
ΩN = {τ} of all partitions of N . A special case with only the
merge reaction is called a Marcus-Lushnikov process [26, 25] and
has gained attention from the mathematical community. The anal-
ogous process with only the split reaction is called a fragmentation
process and has been studied extensively in the context of branch-
ing processes. The problem we analyze here is a mix of these two
problems.

To simplify the notation, we will drop index N referring to the
total number of nodes in the forthcoming unless needed. As we
will see it is useful to define the following intensity ratio function
q(k, l), based on the ratio between merge and split intensity, as:

q(k, l) =


ψ(k, l)

φ(k + l|l) , if ψ(k, l)φ(k + l|l) 6= 0

0, otherwise
(2)

The existence of a stationary equilibrium state is conditioned on
the reversibility of the Markov chain; a Markov processMt is said
to be reversible with respect to a probability measure µ if for all



t ≥ 0, the processesMµ
t , 0 ≤ s ≤ t andMµ

t−s, 0 ≤ s ≤ t, start-
ing from the same initial distribution µ, have the same finite dimen-
sional distribution [22]. Reversibility is an important property of a
Markov process; if a reversible process is ergodic, its unique sta-
tionary distribution is the reversible measure. The reversible mea-
sure can be derived in general using the flow equilibrium equa-
tion of the Markov chain, i.e., V (τ, ξ)µ(τ) = V (ξ, τ)µ(ξ), where
V (τ, ξ) is the total intensity of transitions from state τ to ξ.

The following theorem gives necessary and sufficient conditions
under which the process is reversible and will therefore converge
to a stationary equilibrium state.

THEOREM 1. [22] Suppose that q(k, l) > 0, for 2 < k + l <
N , then the merge–split Markov process is reversible if and only if
for some function a(k) > 0, k = 1, . . . , N , we can rewrite q(k, l)
as

q(k, l) =
a(k + l)

a(k)a(l)
.

This theorem leads to the well-known deterministic detailed bal-
ance condition on intensities [22], i.e.,

a(k)a(l)ψ(k, l) = a(k + l)φ(k + l|l), k, l : 2 ≤ k + l ≤ N

for some a(k) > 0, k = 1, . . . , N, l = 1, . . . , N .
Moreover, a merge–split process will have a reversible distribu-

tion µ following the closed form formula derived as:

THEOREM 2. Suppose that q(k, l) satisfies the condition given
in Thm. 1, then the merge–split process defined above is reversible
with respect to the invariant measure µ = µN ∈ ΩN , given by

µN (τ) = CN
a(1)n1a(2)n2 . . . a(N)nN

n1!n2! . . . nN !
. (3)

where τ(t) = (n1, . . . , nN ) ∈ ΩN is an acceptable configuration
with nk clusters of size k. CN is a scaling coefficient defined such
that

∑
τ∈ΩN

µ(τ) = 1.

The proof of the theorem proceeds by validating that this distri-
bution satisfies the flow equilibrium condition, which is given by
V (τ, ξ)µ(τ) = V (ξ, τ)µ(ξ), τ, ξ ∈ ΩN . In the forthcoming we
will denote

cN =
1

CN
=
∑
τ∈ΩN

a(1)n1a(2)n2 . . . a(N)nN

n1!n2! . . . nN !
. (4)

The invariant measure gives the stationary state occupation mea-
sure, i.e., the probability that the Markov chain is in state τ in equi-
librium. However, for our purpose, we are interested in knowing
the statistics of nk(τ), i.e., the number of clusters of size k in the
configuration τ . The below statistics are of interest:

νN (k) = E {nk(τ)} , k = 1, . . . N

ςN (k, l) = Cov {nk(τ), nl(τ)} , k 6= l, k, l = 1, . . . , N

σ2
N (k) = Var {nk(τ)} , k = 1, 2, . . . , N

The next theorem derives those statistics:

THEOREM 3. Let µN be given as in Thm. 2, then:

νN (k) = a(k)
cN−k
cN

,

ςN (k, l) = a(k)a(l)

(
cN−k−l
cN

− cN−kcN−l
c2N

)
, k 6= l,

σ2
N (k) = a2(k)

(
cN−2k

cN
−
c2N−k
c2N

)
+ a(k)

cN−k
cN

,

for k, l = 1, . . . , N , and c−m = 0, m = 1, . . ..

PROOF. First, denote an acceptable partition of theN nodes into
n

(N)
k clusters of size k by τ (N) = (n

(N)
1 , . . . , n

(N)
N ). Then assume

that one puts aside k nodes and has a split–merge problem with
N − k nodes. Now, one can split the set of acceptable partitions
ΩN into two separate subsets Ω

nk 6=0
N = {τ ∈ ΩN |nk > 0} and

Ω
nk=0
N = {τ ∈ ΩN |nk = 0}, such that ΩN = Ω

nk 6=0
N

⋃
Ω
nk=0
N .

One can define a one-to-one equivalence relation between a par-
tition τ (N−k) ∈ ΩN−k and a partition τ (N) ∈ Ω

nk 6=0
N such that

n
(N)
l = n

(N−k)
l , l 6= k, n(N)

k = n
(N−k)
k + 1. Using this equiva-

lence relation one can rewrite (4) as:

cN =
∑

τ∈Ω
nk 6=0

N

a(1)n
(N)
1 · · · a(k)n

(N)
k · · · a(N − k)n

(N)
N−k

n
(N)
1 !· · ·n(N)

k ! . . . n
(N)
N−k!

+

∑
τ∈Ω

nk=0

N

a(1)n
(N)
1 · · · a(k)0 . . . a(N)n

(N)
N

n
(N)
1 !· · · 0!· · ·n(N)

N !

where the limitation of the first summing term to clusters of size
N − k is coming from the existence of at least a cluster of size k.
Now we have:

∂cN
∂a(k)

=

∑
τ∈Ω

nk 6=0

N

n
(N)
k

a(1)n
(N)
1 · · · a(k)n

(N)
k
−1· · · a(N − k)n

(N)
N−k

n
(N)
1 !· · ·n(N)

k !· · ·n(N)
N−k!

By using the one-to-one equivalence between ΩN−k and Ω
nk 6=0
N−k

one can rewrite the above equation as:

∂cN
∂a(k)

=

∑
τ∈ΩN−k

a(1)n
(N−k)
1 · · · a(k)n

(N−k)
k · · · a(N − k)n

(N−k)
N−k

n
(N−k)
1 !· · ·n(N−k)

k !· · ·n(N−k)
N−k !

showing that ∂cN
∂a(k)

= cN−k.
Moreover, applying the derivative to (4) yields:

∂cN
∂a(k)

=
cN
a(k)

∑
τ∈ΩN

ντµN (τ) =
cNνN (k)

a(k)

resulting in νN (k) = a(k) cN−k
cN

.
The expression for ςN (k, l) results from differentiating the above

expression with respect to a(l), l 6= k. The expression for σ2
N (k)

is obtained by differentiating one more time the above expression
by a(k).

Theorem 3 gives a characterization of the distribution of cluster
sizes. The correlation between cluster sizes is a result of the finite
value of N and the constraint given in (1). In order to complete the
characterization, we need to obtain the values {cn}.

These values can be derived using the series

S(x) =

∞∑
i=1

a(i)xi,

which is assumed to converge for x ∈ DS = {x | |x| < RS}
where RS is the convergence radius.

THEOREM 4. Under the assumption of convergence of the se-
ries S(x) in DS



1. The values cn, n = 1, 2, . . . are the coefficients of the Taylor
expansion of the function g(x) = eS(x), i.e.,

g(x) = eS(x) =

∞∑
n=0

cnx
n

where g(x) converges over Dg = DS .

2. The radii of convergence of the Taylor series of g(x) and
S(x) are equal, i.e.,

lim
n→∞

cn
cn+1

= lim
n→∞

an
an+1

= R.

3. The values cn can be derived by the recurrence relation:
c0 = 1, c1 = a(1),

(n+ 1)cn+1 =

n∑
k=0

(k + 1)a(k + 1)cn−k, n = 1, 2, . . .

PROOF. We can write eS(x) as

eS(x) = ea(1)xea(2)x2 · · · ea(k)xk · · · , x ∈ Dg.

By expanding every term of the right-hand side as a Taylor series,
i.e., ea(k)xk =

∑∞
j=1

a(k)jxkj

(j!)
, and developing the terms, we ob-

tain a Taylor series expansion for eS(x), i.e.,

eS(x) =

∞∑
i=1

αix
i,

whereαi is the sum over the coefficients of terms xn1x2n2 · · ·xNnN ,
such that n1+2n2+. . .+ini = i. As these coefficients are equal to
a(1)n1 ...a(N)nN

n1!...nN !
, we have ci = αi, which proves the first assertion

of the theorem.
Next we prove the third assertion. Using the definition of g(x),

we have g′(x) = g(x)S(x). If we look at the Taylor series of g(x)
we obtain

g′(x) =

∞∑
n=0

(n+ 1)cn+1x
n

and

g(x)S(x) =

(
∞∑
n=0

cnx
n

)(
∞∑
m=0

a(m)xm
)
.

By expanding the last term, the recurrence equation in the third
assertion results.

Finally, the second assertion is a classical result in analysis of
convergence of series.

As g′(x) = S′(x)g(x), the convergence region for the series
S(x) and g(x) are the same, i.e., Dg = DS . Now, when the limit
RS = limn→∞

an
an+1

exists, the convergence region of the power
series S(x) =

∑
anx

n is defined as DS = {x| |x| < RS}.
But Dg = DS , meaning that if Rg = limn→∞

cn
cn+1

exists, we
have RS = Rg . Now we just need to prove that the existence of
limn→∞

an
an+1

implies the existence of limn→∞
cn
cn+1

. This last
property is proven in [16].

The above theorem gives a simple and efficient method to derive
the value of the coefficients cN , which are used to compute the
distribution of cluster size based on Thm. 3. The method can be
summarized as:

1. Write the series S(x) and obtain the function that it con-
verges to.

2. By deriving the function g(x) = eS(x), find a recurrence
equation for the coefficient cn.

3. Using the recurrence equation, the values cn are obtained,
yielding the distribution of cluster sizes.

We thus have a complete theoretical characterization of the distri-
bution of cluster size for finite values of the number of nodes.

2.2 Mean field analysis
The above analysis allows us to derive an analytic description of

merge–split systems with finite number of nodes. However, the ex-
act derivation does not provide much analytic insight into the large-
scale behavior of systems of mobile nodes. Moreover, the proposed
derivation, even if straightforward, becomes imprecise when the
number of nodes N becomes large because the values of cn grow
almost exponentially. For as few as 70 nodes, some values of cn
come close to 1071. Since the recurrence relation requires repeated
summation of large values, numerical errors propagate to all values
of cn. For this reason, an approximation that is more amenable to
calculation for systems with more than 70 nodes would be desir-
able. In order to deal with these two issues, we present an asymp-
totic analysis of merge–split processes, i.e., the limit process when
the number of nodes grows, N → ∞. The asymptotic behavior of
νN (k) is obtained through the next theorem:

THEOREM 5. Suppose that

R = lim
n→∞

cn
cn+1

,

then for fixed k, we have:

lim
N→∞

νN (k) = a(k)Rk, k = 1, 2, . . .

lim
N→∞

ςN (k, l) = 0, k 6= l, k, l = 1, 2, . . .

lim
N→∞

σ2
N (k) = a(k)Rk, k = 1, 2, . . .

PROOF. The proof comes straight from Thm. 3 and the follow-
ing observation:

lim
N→∞

CN−k
CN

= lim
N→∞

CN−k
CN−k+1

CN−k+1

CN−k+2
· · · CN−1

CN
= Rk

The above asymptotic behavior provides a very interesting insight:
it proves the existence of a limit when the number of nodes di-
verges, moreover it proves that the correlation between the number
of clusters of different sizes vanishes with increasing number of
nodes. This last property is called the propagation of chaos in the
literature as it means that the correlation between states disappears
as the number of nodes diverges.

Recently, [3] proposed a methodical approach to derive the mean
field of a special class of processes where the intensity of reactions
in a system vanishes with increasing number of interacting nodes,
N . For such processes, the state occupation measure of the process
converges to a mean field limit that is given as the solution of the
drift equation of the state occupation measure. Unfortunately, the
intensity of the above merge–split process is not vanishing as we
assume that asymptotically the density of merge and split reactions
converge to K(k, l) > 0 and F (k|l) > 0, respectively. Therefore,
the framework from [3] is not applicable and we have to derive the
mean field directly. Theorem 5 and the propagation of chaos are
the basis from which the mean field will be obtained, as we will
describe next.



The above theorem is difficult to apply to systems with finite
number of nodes because the physical condition of the system changes
as the number of nodes increases. One has to take care to en-
sure that the density of nodes remains constant when the number
of nodes diverges. Assume that a finite system with n nodes is
evolving in a unit volume. In order to maintain the same physical
conditions, we have to let V (n) grow along with the number of
nodes n diverging, but ensuring that the node density remains con-
stant and equal to N , i.e., we are analyzing ηN (k), the density of
clusters of size k, when the density of nodes is equal to N :

lim
n→∞,n=N.V (n)

νn(k) = ηN (k),

where the constraint n = N.V (n) results from the node density
being set to N , as indicated by subscript N . By extension η(k, t)
is defined as the density at time t of clusters of size k. We also
define the merge rate per volume unit as

KN (k, l) = lim
n→∞,n=N.V (n)

ψn(k, l)

V (n)
.

Similarly we define the split rate per volume unit as

FN (k|l) = lim
n→∞,n=N.V (n)

φn(k|l)
V (n)

.

Again, we will drop index N when it is obvious from the context.
We assume that the initial state η(m, 0), m = 1, . . . ,∞, sat-

isfies the node conservation condition, i.e.,
∑
k≥1 kη(k, 0) = N ,

with N denoting the density of nodes. Using the above notation
and with Thm. 5, stating that the correlation between the num-
ber of clusters ςN (k, l) → 0 vanishes as N → ∞, we write the
Kolmogorov forward equation of the Markov chain governing the
merge–split process with infinite number of nodes:

∂η(m, t)

∂t
=

1

2

m−1∑
l=1

K(l,m− l) · η(l, t)η(m− l, t) (i)

−
∞∑
l=1

K(m, l) · η(m, t)η(l, t) (ii)

+

∞∑
k=m+1

F (k|m) · η(k, t) (iii)

− 1

2

m−1∑
l=1

F (m|l) · η(m, t). (iv) (5)

The above equation is the drift equation of the limit state variable
η(i, t); it has four terms, two from merge and two from split re-
actions: (i) drift into state (m, t), resulting from merges between
clusters of size l and m − l (the factor 1

2
results from the sym-

metry of merges between clusters of size l and m − l); (ii) drift
from state (m, t), resulting from merges between clusters of size
m and any other size; (iii) drift resulting from splits of clusters of
size greater thanm into one cluster of sizem and another cluster of
any other size; (iv) drift resulting from clusters of size m splitting
into smaller clusters (again, the factor 1

2
results from the symmetry

of splits of clusters of size l into clusters of size m and l −m).
As in the discrete case, there are two important variants. With-

out the split reaction, i.e., F (k|l) = 0 for all k < l, we have a
purely coalescent process described by the Smoluchowski equation
[34]. Discarding the merge reaction, i.e., K(k, l) = 0 for all k, l,
results in a purely branching process. The Smoluchowski equa-
tion attracted an important historical interest in statistical physics
[13] as it fits many real world problems, e.g., polymer synthesis in

chemistry, aerosol formation in the atmosphere, or phase separa-
tion in liquid mixtures. More recently, through the seminal survey
by D. J. Aldous [2] the problem gained a lot of interest from the
mathematical community.

Now let us assume that cluster sizes are continuous, i.e., υ(x, t)
denotes the density of clusters of size x at time t, x continuous.
Then the Kolmogorov forward equation (5) turns into an integro-
differential equation:

∂υ(x, t)

∂t
=

1

2

∫ x

0

K(y, x− y)υ(x− y, t)υ(y, t)dy

−
∫ ∞

0

K(x, y)υ(x, t)υ(y, t)dy

+

∫ ∞
0

F (x+ y|y) · υ(x+ y, t)dy

− 1

2

∫ x

0

F (x|y)υ(y, t)dy. (6)

In the sequel, we are interested in deriving, when it exists, the
asymptotic value υ(x) = limt→∞ υ(x, t). When such an asymp-
totic value exists, it is the mean field approximation of the station-
ary distribution.

Fortunately, when the process is reversible, the stationary solu-
tion of the above integro-differential equation has a simple form
that is given in the next theorem.

THEOREM 6. The unique stationary solution

υ(x) = υ(x,∞)

of (6) for a reversible Markov chain satisfying the node conserva-
tion condition is:

υ(x) = a(x)eλx, (7)

where λ is obtained subject to the node conservation condition (1),
∞∑
k=1

kυ(k) = N, (8)

where N is the node density.

PROOF. For (6) to reach an equilibrium, we need that ∂υ(x,t)
∂t

=
0, i.e.,

1

2

∫ x

0

K(y, x− y)υ(x− y, t)υ(y, t)dy

+

∫ ∞
0

F (x+ y|y)υ(x+ y, t)dy

=

∫ ∞
0

K(x, y)υ(x, t)υ(y, t)dy +
1

2

∫ x

0

F (x|y)υ(x, t)dy

Indeed, υ(x) = a(x)e−λx holds under the above condition.

Remark A sufficient condition for a function f(x) to be the equi-
librium solution of (6) is that it satisfies simultaneously the two
below equations:∫ x

0

K(y, x− y)f(x− y)f(y)dy =

∫ x

0

F (x|y)f(x)dy,∫ ∞
0

K(x, y)f(x)f(y)dy =

∫ ∞
0

F (x+ y|y)f(y)dy.

These two conditions are satisfied simultaneously if we require the
below deterministic balance equation:

K(x, y)f(x)f(y) = F (x+ y|y)f(x+ y), x, y ≥ 0. (9)



Note that a merge and split rate satisfying the reversibility condi-
tions defined in Thm. 1 satisfies the above condition.

The next theorem shows the convergence of the system of N
nodes to the mean field represented by the stationary solution given
in (7) for a large class of merge–split processes.

THEOREM 7. For all functions a(x) satisfying a(x) ∼ xαeγx

when x→∞, we have:

lim
N→∞

νN (k)

υ(k)
= 1.

PROOF. Using the terms in theorem 5, we have:

lim
N→∞

νN (k)

υ(k)
= Rk lim

N→∞
e−kλ(N), k = 1, 2, . . .

We proved in Thm. 4, that R = limN→∞
an
an+1

= e−γ , following
the assumption of the theorem. Moreover, the node conservation
condition leads to:

lim
N→∞

λ(N) = γ,

which is necessary to ensure that
∫∞

0
a(x)eλ(N)xdx = N → ∞.

Finally, putting back in the term for limN→∞
νN (k)
υ(k)

, the conver-
gence to 1 is proven.

This theorem yields a surprisingly simple large-scale behavior of
the merge–split process that is called Mean Field Approximation
(MFA). The MFA is of major interest as it provides a closed-form
formula describing the cluster size behavior; in particular, it re-
lates a(x), a microscopic parameter of the merge–split process, and
through it the intensity ratio q(x, y), to a macroscopic property of
this process, the cluster size distribution υ(k). This closed-form
function gives insight into the properties of the cluster size distri-
bution that cannot be inferred easily by observing the exact distri-
bution νN (k). In particular the MFA shows that the head of the
distribution is controlled by a(x), but the tail is determined by the
exponents γ and λ, thus depending on the(finite) number of nodes.

Nonetheless, note that the convergence to the MFA is asymp-
totic. In particular, for large k(N) < N , the convergence of νN (k)
to a(k)Rk is known to be slow; i.e., νN (k) and υ(k) might differ
considerably for large k(N) < N .

2.2.1 Emergence of giant components
Giant components are clusters that contain a large proportion of

nodes. When the number of nodes diverges, giant components be-
come clusters of infinite size. The emergence of giant components
has important practical implications: during the time when such
components exist, messages can be exchanged between a fraction
of nodes via a connected path. This means that the emergence of
giant components is desirable and calculating the likelihood of their
existence is of practical interest. It was argued before than the MFA
loses its precision for large cluster sizes, but this is precisely the
part of the distribution that is interesting for the analysis of giant
components.

Let LN (α) be defined as the number of clusters of size larger
than αN (0 < α < 1) for a scenario with N nodes. Then this
value is derived as:

LN (α) =

N∑
k=αN

νN (k).

Substituting the term in Thm. 5 for νN (k), we obtain:

LN (α) = c−1
N

N∑
k=αN

a(k)cN−k.

The existence of a giant component requires that

lim
N→∞

LN (α) > 0

for α ≤ α0.
Frequently, the emergence of giant components comes along with

violation of the node conservation condition [14]. The physical
phenomenon corresponding to the emergence of an infinite-size
cluster and violation of node conservation is called gelation or pre-
cipitation. Before gelation, the node conservation condition holds;
after gelation,

∑∞
k=0 kν∞(k) decreases as the number of nodes

available in the non-gelated phase decreases. This is a well-known
phase transition phenomenon in chemistry, where all (or a large
proportion of) particles in a suspension evolve from a fluid phase
into a semi-solid (gelation) or solid (precipitation) phase. As our
interest in this paper is the stationary distribution that emerges after
a long time, the resulting stationary distribution might not satisfy
the node conservation condition. In particular, this means that some
proportion of the nodes are not participating in the merge–split pro-
cess because they are “captured” in a giant component, or because
they have been withdrawn from the interaction medium.

In the context of this work we are more interested in systems
with finite size. For these systems we can ensure node conservation
by setting the parameters of the function a(x) appropriately. We
illustrate this procedure further in Sec. 2.3.

2.2.2 Case study
To show the convergence to the mean field and illustrate the

above effects, we study two cases: a(i) = β and a(i) = β
i

.
Case 1: a(i) = β. This is the case where the merge and split rates
are constant and q(i, j) = 1

β
. The function S(x) is derived as

S(x) =

∞∑
i=1

βxi =
βx

1− x ,

with DS = (−1, 1) and g(x) = e
βx
1−x . By deriving g(x) we

have (1 − x2)g′(x) = βg(x), yielding the following recurrence
equations for n = 1, 2, . . .:

c0 = 1, c1 = β;

(n+ 1)cn+1 = (2n+ β)cn − (n− 1)cn−1,

which leads to a monotonically increasing sequence cn, n > 0.
Therefore νN (k) is monotonically decreasing with k, 1 ≤ k < N
(it might increase for k = N ).

Applying the mean field formula given in Thm. 6, with a(x) = β

we obtain λ(N) = −
√

β
N

:

υ(x) = βe−
√
β
N
k, (10)

showing an exponential decrease of the number of clusters with the
cluster size. The asymptotic distribution predicted by Thm. 5 is de-
rived by noting thatR = limk→∞

ak
ak+1

= 1 and limN→∞ νN (k) =

β. Moreover limN→∞ λ(N) = 0, showing that limN→∞ υN (k) =
limN→∞ νN (k) = β.

In Fig. 1a we show the distribution of cluster sizes obtained by
the method described for finite number of nodes for a 100 nodes
scenario, as well as the MFA given in Thm. 6. This demonstrates
the remarkable quality of the mean field approximation, at least for
small values of cluster sizes. Note that Fig. 1a also shows the loss
of precision of the MFA for large k for finite numbers of nodes,
N . These observations are in line with the theoretical analysis that
predicted the MFA to be looser for large cluster sizes.



(a) a(i) = β; note the logarithmic y axis.

(b) a(i) = β
i

; note the logarithmic x and y axes.

Figure 1: Cluster size vector ν100(k): exact derivation com-
pared to result of MFA; N = 100, β ∈ {0.1, 1, 10}.

Case 2: a(i) = β
i

. In this case q(i, j) = ij
β(i+j)

. Such a func-
tion a(i) can be used when clusters merge with a rate proportional
to the product of their size and split with a rate proportional to their
size. With this assumption, the function S(x) is derived as

S(x) = β

∞∑
i=1

xi

i
= −β log(1− x), DS = (−1, 1).

Consequently g(x) = 1
(1−x)β

. This results in

cn =
β(β + 1) . . . (β + n− 1)

n!
(11)

=
Γ(n+ β)

Γ(β)Γ(n+ 1)
, n = 0, 1, . . .

Applying Thm. 3 generates the statistics of cluster sizes in a straight-
forward way. In particular for β = 1 we have cn = 1 resulting in
νN (k) = β

k
, which is independent of N .

The MFA for a(x) = β
x

is obtained as

υ(x) =
β

x
e−

β
N
x (12)

and the asymptotic distribution predicted by Thm. 5 then becomes
limN→∞ νN (k) = β

k
.

We show in Fig. 1b the distribution of cluster sizes obtained for
a 100 nodes scenario with a(i) = β

i
as well as the relevant MFA.

Here also the MFA results in a remarkable approximation for small
to moderate values of cluster sizes. However the approximation
becomes looser for large cluster size because of the accumulation
effect of finite N . By comparing Figs. 1a and 1b, it can be seen
that large size clusters are more frequent with a(i) = β

i
than when

a(i) = β. In particular, in Fig. 1b the exact derivation of the cluster
size vector for β = 0.1 yields 0.60 clusters with size 100, imply-
ing that only 40% of the nodes are in smaller clusters, hence the
distribution is concentrated on a single cluster with 100 nodes.

Analysis of the correlation structure of the number of clusters
gives interesting insights for this case. We show in Fig. 2, the cor-
relation coefficient ςN (k,l)

σN (k)σN (l)
obtained through Thm. 3 for dif-

ferent values of β when a(i) = β
i

. For β ≤ 0.1, we observe a
relatively strong correlation between values νN (k) and νN (N−k)
(the values on the antidiagonal). Moreover, there is also a strong
correlation between νN (N) and all other νN (k) (last row and col-
umn of the correlation coefficient matrix). This means that there are
frequent direct transition from clusters of size k < N to cluster of
sizeN . The correlation on the antidiagonal can be interpreted as re-
sulting from this last fact; most transitions are CN → CN−k +Ck
and CN−k + Ck → CN , i.e., the number of clusters of size k and
N − k are expected to be almost equal and this is confirmed by
observing the curves in Fig. 1b that shows an almost symmetric
curve of νN (k). When β becomes closer to 1, other transitions
also appear. Nevertheless, for values of β < 1, these reactions
occur almost exclusively for clusters of large size.

Figure 2: Correlation coefficient between number of clusters
ς100(k,l)

σ100(k)σ100(l)
for 100 nodes obtained for a(i) = β

i
for different

values of β, plotted with a logarithmic scale

For β > 1, the correlation structure changes and becomes con-
centrated on the upper left triangle, representing small cluster sizes,
which can be interpreted by observing that now most transitions in-
volve clusters of small size and only rarely large clusters.

2.3 Empirical fitting and effect of parameters
In practice we normally have access to microscopic information

about the merge and split rate that results from the particular mobil-
ity pattern of a scenario. From these information one can estimate
the intensity ratio q̂(i, j), that can be fitted to any functional form.
However we saw previously that in order for the Markov process
defined by the merge–split reactions to be reversible we should be
able to find a function a(i) such that q(i, j) = a(i+j)

a(i)a(j)
. More-

over, Thm. 7, proving the convergence to the mean field, suggests
an asymptotic convergence to a(i) = β e

γi

iα
. Using such a func-

tional form for a(i) results in

q(i, j) =
iαjα

β(i+ j)α
,

showing that q(i, j) does not depend on γ. Therefore α and β
should be derived by fitting to the empirical intensity ratio q(i, j);
γ can be estimated by applying the node conservation condition (1)
to the exact cluster size distribution νN (k), i.e., γ is chosen such
that the resulting distribution νN (k) satisfies (1).

The parametersα and β are derived by fitting empirically derived
values of intensity ratios to a function iαjα

β(i+j)α
by a non-linear least-

mean-square (LMS) technique. Frequently, the number of observed
merge and split events becomes very small in particular for large
cluster sizes, reducing their statistical value. A weighting equal to√
m(i, j)s(i, j) (where m(i, j) is the number of merge events ob-

served between clusters of size i and j and s(i, j) is the number of
split events of clusters of size i + j to two clusters of sizes i and



j, respectively) is applied to every measured intensity ratio. More-
over, for some cases the dynamical range of measured intensity
ratio q(i, j), is very large, e.g., for small i and j, q(i, j) ∼ 0.001
and for large i and j, q(i, j) ∼ 10. In such cases we calibrate
log q(i, j) to log iαjα

β(i+j)α
.

Knowing α, β and γ, the exponent λ to be used in the MFA can
be obtained by solving the following equation:

β

N∑
k=1

e(γ+λ)k

kα−1
= N. (13)

Solving this last equation provides all the information needed for
predicting the cluster size distribution.

2.3.1 Impact of parameters α, β, λ, γ
The expressions used in the above parameter fitting procedure

provide insight as to the influence of the parameters on the shape
of the cluster size distribution; this curve has two distinct parts: its
head and its tail. The head of the distribution contains two essential
pieces of information: the number of isolated nodes, i.e., nodes that
are not connected to any other node, and the slope of the decay of
the distribution. The mean field approximation yields that for small
values of cluster sizes, the distribution can be approximated as a
polynomial with exponent −α, and the number of isolated nodes
can be estimated as equal to υ(1) = βeλ, where, in contrast to α
and β, λ depends on the number of nodes.

The tail of the distribution is governed partly by the number of
nodes N , which directly controls γ and λ. If N increases, the
exponent γ + λ turns positive, yielding a greater number of large
clusters; indeed in that case, one may expect a bump at the tail of
the distribution. This bump is the sign for the emergence of giant
components, as we will discuss in the next section.

2.3.2 Emergence of giant components
Giant components are a well-known phenomenon in percolation

theory [12]. In our case, the conditions under which such giant
components emerge are determined by the value of λ+ γ, which is
controlled by (13). This equation states that the exponent λ + γ is
positive if and only if β

∑N
k=1

1
kα−1 < N . For example if α = 1,

β
∑N
k=1

1
kα−1 = N , yielding two qualitative behaviors, depending

on the value of β. For β < 1, one may observe giant components,
whereas for β ≥ 1 no such components emerge. This is in line
with the analysis given in Sec. 2.2.2, where β = 1 was found to
be a boundary value for two distinctive behaviors of the correlation
structure of the finite system of nodes 1. Indeed, the smaller the
value of β

∑N
k=1

1
kα−1 (i.e., the larger α and the smaller β), the

larger the exponent λ+ γ and the stronger the tail bump, implying
a larger giant component.

This last property gives intuition as to the impact of the param-
eters and helps to interpret them in terms of mobile network sce-
narios. A large α and a small β relative to N , i.e., small β/N
means that the system of N nodes has one or several giant com-
ponents in its stationary state, accompanied by isolated nodes that
merge and split with the giant components. In contrast, a small
value of α, independently of β, implies that the network will re-
main an archipelago of disconnected clusters that merge and split
among each other.

3. VALIDATION
1A similar analysis, with more rigorous analytical basis, can be
done for the exponent γ alone (in place of λ + γ) and leads to
mathematically stronger results; this analysis is omitted due to lack
of space

To this point, the analysis provided was strictly of theoretical na-
ture. In this section we aim to validate that this mathematical ana-
lysis is of practical interest for predicting the behavior of realistic
mobile wireless networks. We will do this by analyzing a variety of
scenarios: three real world scenarios as well as a synthetic random
walk scenario. First, we will use the contact trace from Infocom
2005 as an example of a realistic mobile network and show that it
can be described by a merge–split model. In the second part we
study the random walk simulation, which serves to relate scenario
parameters such as node density to the parameters of the merge-
split process. Finally, we will analyze two large-scale traces based
on GPS position records from taxis in San Francisco and Shanghai
to show the applicability of our model to scenarios with hundreds
and thousands of nodes.

3.1 Infocom 2005 contact trace
In this subsection, we study the scenario described in [7]. In

this experiment, 41 conference attendees of Infocom 2005 carried
a small Bluetooth contact logger during the three days of the con-
ference. Based on the Bluetooth contacts logged as tuples {device
hardware address, contact start time, contact end time}, the connec-
tivity graph has been reconstructed, allowing the merge and split
rate function to be estimated empirically and their intensity ratio
(defined in (2)) to be derived. We plot the ratio q(i, j) of those val-
ues in Fig. 3a: clearly, q(i, j) increases with cluster size; nonethe-
less, a large part of the rate function remains undefined (shown with
white color corresponding to “not a number” (NaN) in the figure)
as no merge and split involving these values has been observed.

(a) Observed merge/split
ratio q(i, j)

(b) Predicted q̂(i, j) vs.
observed ratio q(i, j)

Figure 3: Merge/split ratio q(i, j) and comparison with predic-
tion in the Infocom scenario

Applying the weighted least-mean-squares fitting described in
Sec. 2.3 to the measured intensity ratio yields an estimation of α̂ =

3.71±0.1, β̂ = 16.73±0.95 with a remarkableR2 = 0.998 good-
ness of fit indicator. The value γ̂ = 0.83 is obtained by enforcing
node conservation on the distribution νN (k). By enforcing node
conservation on the MFA, one can derive λ = −0.66, resulting in
λ + γ = 0.17 and therefore the emergence of a giant component.
This can be verified by noting that 16.73

∑41
k=1

1
k3.71

= 21.25 <
41. In Fig. 3b, we plot the observed ratio q(i, j) against the pre-
dicted ratio q̂(i, j) = a(i+j)

a(i)a(j)
, with a(x) = 16.73

x3.71e0.86x
.

In Fig. 4a, we compare the cluster size vector observed over the
entire trace with the distribution predictions introduced previously,
i.e., the exact derivation from Sec. 2.1, and the MFA from Sec. 2.2.
The two distributions predict the empirical distribution with re-
markable accuracy and the difference between the MFA and the
exact derivation are in line with the analysis provided previously.



(a) Infocom

(b) San Francisco taxicabs

(c) Shanghai taxicabs

Figure 4: Empirical cluster size vector for real-world scenarios
with exact derivation and MFA

Note that even though the number of nodes is quite small, the exact
derivation still yields a good prediction of the cluster size vector.

3.2 Synthetic random walk scenario
As a second scenario to validate our approach we used a syn-

thetic random walk scenario. For this purpose, we run an extensive
set of simulations with a simple home-grown mobility simulator
that models mobile nodes moving according to the following ran-
dom walk mobility model: at initial time t = 0, N = 1000 nodes
are placed uniformly at random in a square area with variable side
length. Every node is assigned a random direction in [0, 2π). All
nodes move in the assigned direction for one distance unit, then
they pick a new direction at random. If the trajectory of a node
leads outside the simulation area it is reflected at the closest border.
A link between two nodes is up if their Euclidean distance is less
than the transmission range rTX = 100. In Fig. 5, we plot the fit-
ted values of α and β as a function of coverage (defined as the ratio
between the area covered by the aggregated transmission range of
all nodes and the simulation area). Since the coverage decreases
with the square of the area side length, we picked values with ra-
tio 1 : 4

√
2. The coverage values range from 0.44 (corresponding

to an area side length of 8450) up to 12 (side length 1618). We

Figure 5: Estimated values of parameters α and β as a function
of coverage in the random walk scenario

observe that with increasing coverage, α increases almost linearly
and β decreases almost exponentially. Nevertheless, this holds only
for coverage values greater than 4.4, where giant components may
emerge. The figure also indicates the value of α at which large clus-
ters can be expected to emerge. To further illustrate the emergence

(a) Coverage 0.8

(b) Coverage 3.2

(c) Coverage 8.6

Figure 6: Empirical cluster size vector for random walk sce-
nario with exact derivation and MFA

of giant components, we plot the empirical cluster size vector as
well as the cluster size vector calculated according to the exact and



the mean field derivation from Sec. 2 in Fig. 6 for three coverage
values. While no giant component emerges for coverage values of
0.8 or 3.2, at coverage 8.6, the empirical result as well as the exact
and the mean field prediction indicate the existence of giant compo-
nents. Note that since in this scenario node distribution is uniform,
connectivity, i.e., the emergence of a single giant component in-
volving all nodes, requires coverage of about 12. At this high node
density, almost no merge and split events are observed and 99%
of time all nodes are in the same cluster, corresponding to the net-
work being connected. This is in line with results of continuum
percolation theory [12].

3.3 Taxicab mobility traces
We draw further statistics from two mobility traces based on GPS

(Global Positioning System) position records from taxicabs. Since
our model is based on cluster merge and split events, the raw po-
sition reports from GPS traces need to be translated to node adja-
cency matrices. In line with other recent publications [35, 8], we
define two nodes to be connected if their distance does not exceed
a fixed transmission distance (we use 200 meters, roughly corre-
sponding to the typical range of IEEE 802.11). Note that under this
simple definition of a link, a link being up between two nodes in-
dicates only that those nodes are close enough for communication
to be feasible in principle, but it does not imply that communica-
tion would succeed in practice. (In contrast, in the Infocom con-
tact trace, two nodes being connected means that they actually ex-
changed data.) Nonetheless, since the calibration (cf. Sec. 2.3) in-
corporates the propagation model in the same way as the observed
cluster size distribution against which we validate the prediction,
our validation remains valid.

While one could emulate the effects of wireless propagation post
facto, we expect that it would not significantly affect the quality of
our prediction.

As the GPS position reports contain outliers, we use an MAD
(Median of the Absolute Deviation) filtering procedure [11] on the
raw positions. We consider only reports that are no farther apart
than certain distance and time limits and interpolate positions be-
tween reports to increase temporal resolution to ten seconds. Fi-
nally, to reduce the impact of daily patterns, we use only the time
range 8AM until 12PM.

3.3.1 San Francisco taxicab mobility trace
The traces from the San Francisco Cabspotting project have pre-

viously been studied in the context of DTN [30]; our trace contains
11.2 million GPS positions from 517 cabs over the course of 21
days. We applied the model calibration over this data set and ob-
tained estimates of α̂ = 4.437 ± 0.004 and β̂ = 133.2 ± 0.4,
γ̂ = 0.3648 with an R2 = 0.995. The MFA was calibrated with a
value λ̂ = −0.3258. The comparison of the empirical distribution
of cluster sizes over the San Francisco taxis and the comparison
with the exact derivation and the MFA are shown in Fig. 4b. This
figure shows good agreement between the empirical distribution
and the MFA. However, the quality of the prediction at the tail of
the exact distribution degrades. This is to be expected as the num-
ber of nodes (being much larger than 70) yields cn values beyond
the limit of double precision floating point arithmetic. Indeed, for
large scenarios the MFA can be the more suitable approximation as
the figure shows. Of note, the San Francisco trace yields a larger
value of α than the simulation scenario (Sec. 3.2), showing that
in real scenarios nodes have a higher tendency to gather and build
large clusters. Interestingly this tendency is even higher than for
the Infocom scenario, where the exponent α is larger when the pro-
portion of isolated nodes for the two scenarios are between 25% to

35%. This can be explained by the fact that taxis frequently gather
at hot spots (train stations, restaurants, etc.), leading to a highly
non-uniform distribution ([30] studies hot spots in this trace).

3.3.2 Shanghai taxicab mobility trace
The Shanghai taxicab traces were collected by the Traffic In-

formation Grid Team at Shanghai Jiaotong University [20]. The
data consists of GPS position reports from 4063 taxis in Shanghai,
spanning 28 days. We calibrate the ratio of intensity function as
before and obtain α̂ = 3.602 ± 0.1 and β̂ = 1007 ± 3 with an
R2 = 0.9823. The other parameters are also obtained as γ̂ = 0.23

and λ̂ = −0.2242. The comparison of the empirical distribution
of cluster sizes over the Shanghai taxicab trace and the comparison
with the exact derivation and the MFA are shown in Fig. 4c. This
figure shows very good agreement between the empirical distribu-
tion and the MFA. As expected the exact derivation fails to provide
a perfect prediction as the number of nodes leads to computational
artefacts. For this scenario, α is in the order of the Infocom sce-
nario and smaller than the San Francisco scenario. The effect of
the difference in α can be seen by observing that the bump in the
tail of the San Francisco scenario is more pronounced than the one
of the Shanghai scenario. The difference between the two taxicab
scenarios might come from the differences in the gathering pattern
of cabs and from the geographical and topographical difference be-
tween these two cities; hot spots of this trace are studied in [23].

4. RELATED WORK
While routing in mobile ad hoc networks (MANETs) implicitly

assumes a connected network and has often been studied with sim-
ulation, measurements (e.g., [6, 10, 1, 24]) found the scenarios for
which results could be obtained to be disconnected. As a result,
schemes to leverage single-hop communication opportunities (con-
tacts) recently attracted a lot of interest in the context of delay-
tolerant networking (DTN) [21]. Studying in particular space-time
paths, i.e., multi-hop paths arising over time, Chaintreau et al. [9]
observed a “small world” behavior in many mobility traces, as the
diameter of those networks is around four to six hops.

At a more abstract level, the gathering behavior of people has
inspired several mobility models and forwarding schemes which
explicitly account for clustering properties (e.g., [27]); algorithms
building upon this property often complement MANET routing with
opportunistic forwarding between clusters (e.g., [31]). Piórkowski
et al. [30] derived a heterogeneous random walk mobility model
that includes clustering as a feature of the scenario, rather than as
the result of social behavior of the nodes—thus rendering nodes sta-
tistically indistinguishable. Similar to their work, our model is also
completely agnostic to social behavior of nodes. Focusing specif-
ically on the order in which contacts happen, Tang et al. [33] in-
troduced a temporal distance metric based on the concept of reach-
ability and connected components which quantifies the efficiency
and diffusion performance of social networks.

Regarding the classification of network scenarios, the phase tran-
sition of connectivity of asymptotically large networks has been
studied using percolation theory already in [29]; further research
analyzed more realistic scenarios [4, 32]. More recently, complex
network research has analyzed the emergence of giant components
in mobile scenarios. For example, Wang et al. [35] studied usage
locations of several million mobile phone users and observed large
clusters emerging in urban areas. Similarly to our comparison of
real-world traces with synthetic mobility, they also observed that
the empirical scenario yields a less abrupt increase of the size of
the largest component as compared to a random geometric graph
model. The size of the giant component has also been studied by



Hekmat et al. [18], where a lognormal propagation model is intro-
duced to smooth the phase transition. From a more abstract angle,
Borrel et al. [5] proposed a methodology for classifying networks
on the entire connectivity range and presents an interesting taxon-
omy of such scenarios.

Finally, Chaintreau et al. [8] used similar methodology to ana-
lyze a disconnected network under a different aspect, namely the
emergence of a spatial mean field describing the age of the latest
update received by mobile nodes running a gossip protocol.

5. CONCLUSION AND FUTURE WORK
Beginning with the observation that real world mobile networks

may comprise sizable connected components (clusters), we develop
a model for predicting the distribution of the size of those clusters
based on the rate at which they merge and split. This model al-
lows capturing heterogenous node distribution as well as multi-hop
paths and yields a closed-form result for finite number of nodes.
We then show that with increasing number of nodes, the process
converges to a mean field behavior. This means that the model
yields a simple expression that translates the observable merge and
split rate of a scenario to the stationary cluster size distribution. In
order to validate the predictive quality of this model, we use both
synthetic random walk mobility as well as three real-world mobil-
ity traces ranging from dozens to thousands of nodes. We find that
the exact derivation as well as the mean field approximation predict
cluster size distribution that matches the empirical distribution with
remarkable accuracy.

Motivated by these results, we have continued our analysis to
obtain several results on the dynamics of the merge–split process.

• We analyze the time to reach the stationary state, yielding
further insight into the temporal characteristics of a scenario;

• for an individual node, we derive the probability distribution
of its cluster’s size following the subsequent merge event;

• we study the fraction of nodes that may communicate in a
disconnected network given a delay bound.

These results are to be published in the near future.
We hope that our work might help to further our understanding

of the complex clustering phenomena in mobile wireless networks
and motivate the consideration of partial paths for forwarding algo-
rithms [17], instead of focusing solely on either contacts (DTN) or
end-to-end paths (MANET).
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