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ABSTRACT

This paper revisits the fundamental trade-off between end-
to-end and hop-by-hop transport control. The end-to-end
principle has been one of the building blocks of the Internet;
but in real-world wireless scenarios, end-to-end connectivity
is often intermittent, limiting the performance of end-to-end
transport protocols. We use a stochastic model that cap-
tures both the availability ratio of links and the duration
of link disruptions to represent intermittent connectivity.
We compare the performance of end-to-end and hop-by-hop
transport over an intermittently-connected path. End-to-
end, perhaps surprisingly, may perform better than hop-by-
hop transport under long disruption periods. We propose
the spaced hop-by-hop policy which is found to dominate (in
terms of delivery ratio) the end-to-end policy over the whole
parameter range and the basic hop-by-hop policy over most
of the relevant range.

1. INTRODUCTION
Emerging wireless communications paradigms face chal-

lenges that differ substantially from those in the wired In-
ternet. Wired networks are in general well-connected over
reliable links and network partitioning is not an issue; thus
it is assumed that source and destination are continuously
connected by an end-to-end path. Early simulation experi-
ments with routing protocols for ad hoc networks [12,18,19]
suggested that end-to-end connectivity can also be assumed
in dense wireless multi-hop networks. The de-facto standard
transport control in wired networks, TCP [4], was found to
under-utilize the network in mobile wireless networks, and
countless proposals of wireless-enhanced TCP modifications
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followed [3]. However, recent real-world measurement stud-
ies of wireless link capacity [1,15] reveal frequent link disrup-
tions even among stationary nodes, thus invalidating many
assumptions of simulation studies. Moreover, node density
is often sparse in real-world mobile wireless networks [13]
and providing end-to-end connectivity is not feasible [14].
Even if an end-to-end path exists for some time, signal prop-
agation impairments, interference, and node mobility incur
frequent network partitioning. Thus, end-to-end connectiv-
ity in wireless multi-hop networks such as sensor, ad hoc,
and mesh networks is often intermittent; we refer to such
scenarios as intermittently-connected networks (ICNs). In
intermittently-connected networks, the performance of end-
to-end transport protocols is limited since such protocols
transfer data only while a connected path is available, lead-
ing to low network utilization.

Instead of proposing yet another modification to TCP,
we wish to take a step back and re-visit the fundamental
design decision of the transport layer. The original objective
of the TCP/IP protocol suite [20, 21] was to interconnect
heterogeneous networks. This objective required a transport
layer implementation that made minimal assumptions about
intermediate network elements and resulted in the end-to-
end transport layer of the current Internet architecture.1

The alternative to an end-to-end transport layer is a dis-
tributed implementation along the network nodes that lie
on the data transport path; we refer to such an implemen-
tation as hop-by-hop transport. The performance of hop-by-
hop transport is superior to the end-to-end alternative in
many aspects. However, this advantage comes at the price
of higher protocol complexity and additional memory and
processing requirements.

In intermittent-connectivity scenarios, hop-by-hop trans-
port may transfer data along partial paths and deliver the
same amount of data with fewer packet transmissions and
lower latency. These advantages are particularly tempting in
mobile networking applications, where a reduced number of
link transmissions results in lower energy consumption and
interference and also has a favorable impact on the capacity
of the network.

1In [11], the safe operating area of TCP’s congestion control
algorithm is discussed in terms of packet error rates and
bandwidth×delay product.



In simulation experiments [8] with a simple hop-by-hop
transport protocol in a mobile wireless scenario, we observed
a substantial gain over TCP if the connectivity of the net-
work is disrupted frequently. However, these results do not
lend themselves to generalization. In [7] we used a Bernoulli
loss model and showed that under that model the hop-by-
hop scheme is superior to the end-to-end scheme.

In an intermittent-connectivity environment, disruption
periods of a connection might be lengthy and therefore a
loss model that accounts for such duration is called for. We
therefore choose to generalize the Bernoulli loss model used
in [7] and model the packet losses via an on/off loss process,
capturing extensive periods of disruption. Under this loss
model we study the behavior of a single source–destination
pair connected over multiple hops.

We analytically evaluate the end-to-end and hop-by-hop
retransmission mechanisms. In the end-to-end case, lost
packets are retransmitted by the source and in the hop-by-
hop case, the retransmission is initiated by the node prior
to the hop where the loss occurred. Our first set of results
somewhat contradicts the Bernoulli loss model results and
might be viewed, at first glance, as surprising. The finding
is that the end-to-end scheme can be superior to the hop-by-
hop scheme; this is in contrast to the Bernoulli loss findings
where hop-by-hop is always superior. The superiority is in
terms of higher delivery ratio (probability of successful de-
livery of a packet). More specifically, we find that under
relatively long disruption periods, end-to-end tends to per-
form better, while under relatively short disruption periods
it performs worse than hop-by-hop transport.

Examination of these findings reveals that the end-to-end
superiority results from the fact that its natural retrans-
mission interval (in the cases of packet loss) is significantly
larger than that of the hop-by-hop scheme. This “patience”
turns out to pay off in a network with long duration failures.

Having made this observation we introduce a variation
of the basic hop-by-hop strategy, which we call spaced hop-
by-hop and which deliberately uses a longer retransmission
interval. We then analyze this scheme and compare it to
both the end-to-end and the basic hop-by-hop scheme.

Our numerical results show that spaced hop-by-hop is su-
perior, in terms of delivery ratio, to the end-to-end scheme
for all durations of the disruption periods, and over a wide
set of parameters. It is also superior to the basic hop-by-hop
scheme for medium and long disruption durations.

Having established these findings for constant (over time)
retransmission intervals, we then examine the spaced hop-
by-hop scheme under time-varying exponential retransmis-
sion intervals. Such a scheme can be useful in driving the
spaced hop-by-hop protocol into the appropriate retransmis-
sion interval. Needless to say that such dynamic exponen-
tial strategy has been widely used, e.g., in TCP. The relative
comparison of the policies under the exponential retransmis-
sion yields results similar to those derived for the constant
retransmission interval.

In prior work as far back as 1976, the two fundamen-
tal transport control principles have been compared, but
under different assumptions. Gitman [6] evaluates delay
and utilization under hop-by-hop and end-to-end retrans-
mission in a similar analytical model of an early wireless
network, but with uncorrelated packet loss and unlimited
number of transmissions. He observes that hop-by-hop re-
transmission leads to lower delay and higher utilization for

multi-hop paths and/or lossy links. In [2], DeSimone et al.
investigate the crucial interaction between link-layer and
transport-layer retransmissions analytically; they observe a
positive impact of link-layer retransmissions on end-to-end
throughput only if the link loss rate exceeds a threshold.

The rest of this paper is organized as follows. In the next
section, we derive bounds for hop-by-hop and end-to-end
transport and review our previous work based on simula-
tion and analysis. In Sec. 3, we present our simple analyti-
cal connection model; numerical results follow in Sec. 4. In
Sec. 5, we discuss the implications of our results and outline
future work. In Sec. 6, we conclude the paper.

2. MOTIVATION
Hop-by-hop transport is intuitively expected to exhibit

some performance advantages over end-to-end transport, as
it recovers loss locally. For a chain topology scenario, it
is also straightforward to show analytically that the upper
bound on the achievable throughput is higher with hop-by-
hop transport. Consider a source–destination pair commu-
nicating over a chain of H wireless links (hops). Assume
that every link is only available a fraction q of the time,
as a result of the wireless environment and node mobility.
An upper bound for the achievable link throughput can be
obtained under the following simplifying assumptions.

With end-to-end transport control, data can only be trans-
ferred when all links are available contemporaneously. Dur-
ing those periods the throughput T e is bounded by the
link capacity, C. Given the link loss rate q, we can write
T e ≤ qH ·C. In contrast, hop-by-hop transport is capable of
utilizing individual links given that the node at the sending
end of each hop has data to send. Thus, the throughput of
hop-by-hop transport T h is bounded by the fraction of hops
that are available over the path length, so that the upper
bound is given by T h ≤ q ·C. For all values of 0 < q < 1, it
holds that T h ≥ T e.

2.1 A simulation case study: TCP vs. SAFT
To derive a first insight to the achievable gain of hop-

by-hop transport in intermittent-connectivity scenarios, we
performed simulation experiments. The network scenario
involved sparse mobile ad hoc networks; the combination of
mobility with sparse population resulted in frequent route
disruptions and intermittent end-to-end connectivity. We
compared the performance of TCP NewReno [4] to that of
our own hop-by-hop protocol implementation called SAFT
(Store-And-Forward Transport). SAFT provides a service
interface identical to that of TCP, but transfers data hop-
by-hop; the protocol is described in [8].

In our simulation study, 30 nodes moved according to the
random waypoint mobility model within an area of 1000m×
3000m. Since the wireless range is only 250m, disruptions
were very likely. Routes were established on-demand via
the AODV [17] routing protocol. Our application scenario
was simple. At the beginning of the experiment, 10 source–
destination pairs were chosen randomly among all nodes.
The source nodes started transmitting 10 messages of 100KB
each during the first 100 seconds. Hence, the total amount
of data to be transferred by the network was 10’000KB.

In Fig. 1, we plot the data transfer progress over time for
10 connections from a random simulation run. The bold
curve indicates the total amount of data transferred as a
percentage of 10’000KB. With TCP, the complete transfer



took one hour; SAFT delivered the same amount of data
within one quarter of the time. The plotted scenario illus-
trates that the progress of the data transfer with SAFT was
much steadier than with TCP. The plot of the TCP progress
shows periods where the destination nodes did not receive
any data. This alternation between transfer and idle periods
is also visible in the hop-by-hop protocol’s plot, but the idle
periods are shorter.

 

 20%

 40%

 60%

 80%

 100%

 0  1000  2000  3000
Time [s]

Individual
connections

10
9
8
7
6
5
4
3
2
1

Overall

TCP NewReno

 

 20%

 40%

 60%

 80%

 100%

 0  500  1000
Time [s]

SAFT

Figure 1: Transfer progress. 100% , 10’000kB

Our analysis of the trace files revealed that TCP trans-
mitted data primarily over single-hop connections, and typ-
ically, only one connection was transmitting at a time. In
contrast, SAFT used a mix of single- and multi-hop routes,
sharing the limited bandwidth more effectively among mul-
tiple connections. Additionally, the hop-by-hop protocol
started transmitting data much earlier than TCP. The late
start of TCP is partly due to the frequent pseudo route fail-
ures that occurred with this protocol. Such failures were not
due to node mobility but rather caused by TCP’s bandwidth
probing mechanism.

Overall, the simulation experiments suggested that, in
the considered scenarios, our hop-by-hop protocol is able to
make better use of the communication opportunities. How-
ever, the performance of the transport protocol is dependent
on many variables (transport layer configuration, routing
protocol, mobility), so that the simulation results can only
be viewed as a case study. To enable more positive state-
ments about the relative performance of the two transport
alternatives, we turned our focus on analytical modeling.

2.2 End-to-end vs. hop-by-hop transport
under Bernoulli loss

In [7] we carried out a first comparison of the two trans-
port alternatives under simple models for the network and
the link loss process. We assumed a chain topology with H
hops and a single source–destination pair. At every hop i,
the packet loss process was Bernoulli with parameter qi; in
case of transmission failure, the packet was retransmitted up
to L − 1 times. With end-to-end transport, retransmission
was carried out at the source; in the hop-by-hop case, the
packet was retransmitted locally over the hop where the fail-
ure occurred. We computed the probability that a packet
arrives at the destination and the expected number of re-
quired link transmissions as a function of H and L.

In Fig. 2, we show these two metrics for the 5-hop chain,
with qi = q,∀i, 1 ≤ i ≤ H, and a maximum of L = 7
and L = 15 transmissions. Fig. 2a suggests that uncorre-
lated loss of only a few percent can be tackled well by both

transport control principles. As the link loss probability
q increases, both schemes degrade gracefully, the delivery
ratio of the end-to-end scheme dropping more rapidly. As
expected, increasing the number of transmissions results in
increase of the delivery ratio under high loss probabilities.
The hop-by-hop scheme is superior in terms of delivery ratio
to the end-to-end scheme at both settings of L for all loss
probabilities q. For most q values this advantage of hop-by-
hop is combined with fewer link transmissions, as shown in
Fig. 2b. Only at high q values, beyond q = 0.5 in these plots,
are the transmissions with hop-by-hop more but this is the
penalty for achieving a non-zero packet delivery probability
where the end-to-end scheme completely collapses.
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Figure 2: Bernoulli loss process; 5 hops

To summarize, under Bernoulli packet loss, hop-by-hop
transport is more efficient in the use of link transmissions
achieving higher delivery probabilities for any loss probabil-
ity q ∈ [0, 1). Our evaluation confirms the well-known fact
that hop-by-hop retransmission is more effective against un-
correlated loss than the end-to-end alternative. However,
under intermittent connectivity, packet loss is correlated. In
the rest of the paper, we study the relative performance of
the protocols under a model that is more appropriate for
intermittent-connectivity scenarios and taking into account
real-world transport protocol retransmission policies.

3. MODELING AND ANALYSIS
In this section, we introduce our model of end-to-end and

hop-by-hop transport over an intermittently-connected net-
work path.

3.1 Modeling intermittent connectivity
We still consider a chain topology where the source and

destination communicate over a finite number of wireless
hops, H. The link state in each hop is modeled by a two-
state discrete-time Markov chain (DTMC) [5] alternating
between two states: a “good” or “on” state, during which
packet transmissions are successful and a“bad”or“off”state,



during which communication between the two hop end points
is lost. Transitions from the good (bad) to bad (good) state
for each hop i occur at discrete time steps, equal to the
packet transmission time, with probability pgb(i) and pbg(i),
respectively; the corresponding complementary probabili-
ties, pgg(i) := 1 − pgb(i), pbb(i) := 1 − pbg(i), refer to the
probability of staying at the good (bad) state, as depicted
in Fig. 3.

Compared with its Bernoulli counterpart, this loss model
can capture correlations in the loss process, which are com-
mon over wireless links. Moreover, it can be viewed as a
simple model for link disruptions.
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pgg(H)

pbb(H)
pbg(H)

G B

Hop 1 Hop 2 Hop H

Figure 3: On/off loss model.

In the context of this paper, we ignore dependencies be-
tween successive hops; the link state in each hop varies inde-
pendently from that of other hops. This would be the case,
for example, when transmissions over successive hops occur
over different radio channels. It is well known that for the
described two-state DTMC, the expected durations of the
two states are given by

Ei
B =

1

pbg(i)
, Ei

G =
1

pgb(i)
; (1)

the steady-state probabilities of the good and bad state are
given by

P i
B =

pgb(i)

pbg(i) + pgb(i)
, P i

G =
pbg(i)

pbg(i) + pgb(i)
; (2)

and the mean link loss rate qi over the ith hop is defined as

qi := P i
B . (3)

Moreover, the link state transition probability matrix for
hop i is:

Pi =

„

pbb(i) pbg(i)
pgb(i) pgg(i)

«

(4)

and the k-step transition probabilities are the elements of

matrix P
(k)
i

, defined as

P
(k)
i

:=

 

p
(k)
bb (i) p

(k)
bg (i)

p
(k)
gb (i) p

(k)
gg (i)

!

:= (Pi)
k (5)

with elements p
(k)
gb (i) and p

(k)
bg (i), 1 ≤ i ≤ H, denoting the

probabilities of switching from good(bad) to bad(good) state
within k steps of the DTMC evolution, respectively.

3.1.1 Loss correlation and disruption duration

We say that the process represented by the transition
probability matrix Pi is positively correlated if P i

B < pbb(i) =
1− pbg(i) ⇔ pbg(i) + pgb(i) < 1. This means that the condi-
tional probability of the next slot to be“off” (conditioned on
the current slot being “off”) is higher than the steady state
probability of being in “off” state.

The process correlation is zero when the probability of en-
tering the on or the off state is independent of the current
state. This holds when pbg(i) = pgg(i) ⇔ pgb(i) = pbb(i),
which is equivalent to pbg(i) + pgb(i) = 1. Using the defini-
tions of q and E[B] from (2) and (3), the disruption duration
E[B] where the on/off loss model has zero correlation and
thus behaves like the Bernoulli model is E[B] = 1/(1 − q).

Finally, the process is called negatively correlated, when
E[B] is less than 1/(1−q); this means that if a link is in the
off state, it is more likely to be in the on state in the next
time slot, i.e., pbg(i) > pbb(i), and vice-versa for a link that
is in the on state.

3.2 Transport protocol retransmission policy
The number of transmissions is finite and limited to L

for both the end-to-end and hop-by-hop transport schemes.
In the end-to-end scheme, this is the number of attempts
made by the source node; for the hop-by-hop scheme, this
is the number of attempts made by the source and each of
the intermediate nodes. Hence, the maximum number of per
packet link transmissions for both schemes is upper bounded
by the same number H ·L. Note that in the end-to-end case,
this number is reached if the packet traverses the first H −1
hops successfully and then fails at the Hth hop; whereas,
under the hop-by-hop scheme, this number of transmissions
is expended, if at every hop the packet fails in the first L−1
transmission attempts but succeeds in the Lth transmission
attempt.

Most real-world network protocols involving data retrans-
mission employ some sort of back-off algorithm, usually ex-
ponential, for spacing retransmissions in time. The end-to-
end and the hop-by-hop transport protocol we present in this
section may follow any retransmission policy. We use rto(k)
to denote the retransmission timeout (RTO) between the
(k)th and the (k+1)th transmission attempt, 1 ≤ k ≤ L−1,
i.e., after the kth unsuccessful transmission, the retransmit-
ting node waits for rto(k) time slots before initiating the
(k + 1)th transmission.

For both transport alternatives, hereafter noted with su-
perscripts e and h, we derive two metrics for the H-hop chain
topology; the probability of successful packet delivery prob-

ability P
e(h)
D , and the expected number of link transmission

attempts E[Txe(h)] for each packet. Note that for L = 1,
there is only one transmission attempt and no retransmis-
sions. Thus, both schemes behave the same. The proba-
bility of successful delivery is given by PD =

QH

i=1 P i
G and

the expected number of transmissions is E[Tx] =
PH−1

i=1 i ·

(1− P i
G)
Qi−1

k=1 P k
G + H ·

QH−1
k=1 P k

G. In the remainder of this
section, we assume that there is at least one retransmission
allowed, i.e., L ≥ 2.

3.3 Analysis of end-to-end transport
We use the framework of absorbing Markov processes [5]

to model the end-to-end transport behavior on/off loss pro-
cess; we give a brief introduction to this subject in the next
paragraphs.

3.3.1 Absorbing Markov processes

Absorbing Markov processes are Markov processes that
will eventually stop at one or more absorbing states. The
transition probabilities p(i, j) from an absorbing state i to-
wards all other states j, j 6= i will be zero, whereas they
equal 1 when i = j. The remaining non-absorbing states



of the process are called transient states. For an absorbing
Markov process with n absorbing states and N −n transient
states, the probability transition matrix X can be written
as the concatenation of four different matrices

X =

„

T R
0 I

«

In the matrix X, the sub-matrix T is an (N −n)×(N −n)
matrix, with T (i, j) being the transition probabilities among
transient states, whereas the sub-matrix R is the (N−n)×n
matrix with the transition probabilities from transient states
towards absorbing states. The sub-matrix I in X is the n×n
identity matrix of size n, corresponding to the transition
probabilities amongst absorbing states, and the sub-matrix
0 is the all-zero n × (N − n) matrix with the transition
probabilities from absorbing states to transient states.

The description of the absorbing Markov process is com-
plemented by the 1 × (N − n) initial probability vector e,
whose entries e(i) express the probabilities that the process
starts at state i.

With these matrices at hand, it is possible to define the
fundamental matrix Q of the absorbing process

Q = (I − T)−1 (6)

which is most helpful in the computation of several process
metrics. For example, the entry Q(i, j) denotes the expected
number of visits to state j, when starting from state i, be-
fore ending up in an absorbing state. Likewise, the U(i, j)
element of the product matrix U = Q ·R is the conditional
probability of ending in absorbing state j, given that the
process was initiated at state i. Finally, if the number of
steps before the process reaches one of the absorbing states
and terminates is denoted by K, then its expected value is
given by

E[K] = e · Q · 1 (7)

where 1 is the 1 × (N − n) all-one vector.

3.3.2 End-to-end transport as absorbing
Markov process

The state space of the Markov process in our case is finite
and features two absorbing states; they correspond to packet
delivery success and failure, respectively. Each process state
combines the link states {si} of the individual hops in the
chain shown in Fig. 3, si ∈ {G, B}, 1 ≤ i ≤ H, the hop
identity h, 1 ≤ h ≤ H, and the transmission attempt l, 1 ≤
l ≤ L. The process (packet transmission) starts from one
of the 2H different states with h = l = 1 and progresses
towards higher h and/or l, till it reaches one of the two
absorbing states. The number of non-absorbing states is 2H

for h = 1, and 2H−1 for h > 1, yielding a total of W =
2H · (1 + (H − 1)/2) · L states.

The application of equations (6)-(7) requires the deriva-
tion of matrices T and R. The process progresses from
states with h = m, 1 ≤ m ≤ H, and l = k, 1 ≤ k ≤ L
to states with h > 1, l = k, in case of success, or states
h = 1, l = k + 1, k ≤ L − 1, in case of failure. In the second
case, when the failure takes place over hop h, the transition
probabilities involve the (2H − h)-step transition probabili-
ties of the link state processes {si}. The “failure” absorbing
state is reachable from states with l = L, h = m, 1 ≤ m ≤ H,
with pgb(k) or 1 − pbg(k), depending on the actual state,
whereas the “success” state is reached from states featuring

h = H, with probabilities pgg(H) or pbg(H), again depend-
ing on the actual state. An example of the Markov absorbing
process for H = 2, L = 2, rto(k) = 2H ∀k is shown in Fig. 4,
which also depicts all possible transitions amongst the pro-
cess states as well as values of the transition probabilities.

Combining the aforementioned probabilities into matrices
T and R, the probability of successful delivery, P e

D, is the
second element of the 1×2 matrix e·U, whereas the expected
number of transmissions, E[Txe], is given by((7)), where e
is the 1 × W initial state probability vector.

3.4 Analysis of hop-by-hop transport
We assume that all hops are independent; therefore, we

can model hop-by-hop transport based on mean-value anal-
ysis. When packets are acknowledged and retransmitted on
a hop-by-hop basis, the total number of link transmissions
Txh, required for end-to-end packet delivery under maxi-
mum L transmissions per hop can be expressed as the sum
of the transmissions in each one of the H hops

Txh = Mh
1,L + Mh

2,L + . . . + Mh
H,L.

where 1 ≤ Mh
1,L ≤ L and 0 ≤ Mh

i,L ≤ L, 2 ≤ i ≤ H. Taking
mean values we have

E[Txh] = E[Mh
1,L] + E[Mh

2,L] + . . . + E[Mh
H,L].

The expected number of link transmissions over hop i is
conditioned on the probability that the packet makes it to
hop i, i.e., it successfully crosses all prior i − 1 hops.

E[Mh
i,L] = E[Mh

i,L]c · P (packet crossed

all prior i − 1 hops).

where E[Mh
i,L]c denotes the expected number of link trans-

missions over hop i, under the condition that the packet has
traversed all i − 1 previous hops.

The probability of success for the first transmission over
hop i is simply P i

G; the probability of requiring two attempts

to cross hop i is P i
B · p

(rto(1))
bg (i) and, generalizing, that of

requiring n attempts

P n
i,L = P i

B ·
Y

n−2
l=1 p

(rto(l))
bb (i) · p

(rto(n−1))
bg (i), n ≥ 2 (8)

= (1 −

n−1
X

l=1

P l−1
i,L ) · p

(rto(n−1))
bg (i), n ≥ 2,

where P 1
i,L := P i

G; the definition of the k-step transition

probabilities p
(rto(l))
bb (i) := p

(k)
bb (i)

˛

˛

k=rto(l) , p
(rto(n−1))
bg (i) :=

p
(k)
bg (i)

˛

˛

k=rto(n−1) is given in (5).

The packet manages to cross the ith hop within L link
transmissions with probability

P succ
i,L =

L
X

k=1

P k
i,L (9)

and the expected number of link transmissions over hop
i, conditioned upon the successful packet transmission up to
hop i − 1 equals

E[Mh
i,L]c =

L−1
X

k=1

k · P k
i,L + L ·

L−1
X

j=1

(1 − P j
i,L).
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Figure 4: Example of absorbing Markov chain with exemplary transition probabilities; H = 2, L = 2, and rto(k) = 2H ∀k.

Therefore (8) yields for the expected number of link trans-
missions

E[Txh] = E[Mh
1,L] +

H
X

k=2

E[Mh
k,L]c ·

k−1
Y

j=1

P succ
j,L . (10)

Finally, the probability of successful delivery of the packet
becomes

P h
D =

H
Y

i=1

P succ
i,L . (11)

In the next section we present numerical results derived
from our model of end-to-end and hop-by-hop transport un-
der intermittent connectivity.

4. NUMERICAL RESULTS
In this section, we use numerical results to compare the

performance of end-to-end and hop-by-hop transport. We
consider the probability of successful delivery to the desti-
nation, PD, (henceforth referred to as delivery ratio) and
the expected number of link transmissions E[Tx], where Tx
is the number of link layer transmissions incurred by the
protocol in the process of sending a packet until the packet
either reaches the destination or it is discarded after L failed
attempts. Note that we discuss the implications of the nu-
merical results and the limitations of our model in Sec. 5.

In order to investigate the effect of various disruption du-
rations, we evaluate end-to-end and hop-by-hop transport
over a range of mean disruption durations 1 ≤ E[B] ≤ 1000.
We consider both a low loss rate of q = 5% as a reference
point for the situation in a rather well-connected network as

well as a value of q = 20%. The length of the chain topology
is H = 5 hops and the number of transmission attempts is
limited by L = 5.

For the following discussion, we introduce a measure that
we call transmission period, TTx. The transmission period
denotes the maximal period of time along which a packet is
retransmitted before it is discarded; thus if any hop is in the
off state for longer than this period, the protocol will fail to
deliver the packet. The transmission period is determined
by the maximum number of transmissions L and by the
retransmission timeout algorithm of the protocol.

4.1 End-to-end vs. hop-by-hop transport
We compare end-to-end vs. hop-by-hop transport with the

following parameters. The retransmission timeout (RTO)
of the end-to-end scheme is set to the minimum value of
one round-trip time: rto(k) := 2H, k = 1, 2, . . . , L − 1; the
timeout of the hop-by-hop transport protocol is set to the
minimum of one time slot, i.e., rto(k)h := 1, k = 1, 2, . . . , L−
1. Such a short retransmission timeout seems feasible if the
transport protocol relies on the acknowledgment scheme of
the link layer to determine losses. Under these settings,
the transmission period of the end-to-end scheme is T e

Tx =
2H ·L = 50 and for the hop-by-hop scheme it is T h

Tx = L = 5
time slots.

In Fig. 5, we plot the delivery ratio and the expected num-
ber of link transmissions as functions of the mean disruption
duration. The mean link lifetime E[G] changes accordingly
to achieve the given link loss rates of q = 5% and q = 20%.

In the upper plot of Fig. 5, we show the delivery ratio,
and we can see three trends that are common to both val-
ues of q. First, at the very low end of expected disruption
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Figure 5: End-to-end vs. hop-by-hop transport per-
formance as a function of the mean disruption duration
E[B]; constant link loss rates q = 0.05 and q = 0.2

duration values, the hop-by-hop protocol achieves a delivery
ratio very close to unity, even at q = 0.2. In contrast, the
end-to-end scheme is limited by an upper bound; even for
the shortest disruption duration E[B] = 1. For q = 0.05, the
end-to-end scheme achieves a delivery ratio of PD = 99.94%;
for q = 0.2 it delivers 86% of the packets.

Second, the delivery ratio of the hop-by-hop transport
protocol is much more sensitive to the mean disruption dura-
tion and thus becomes significantly inferior at medium and
long disruption durations.

Third, for adequately high values of E[B], both schemes
reach an identical performance floor, which corresponds to
what can be achieved under the Bernoulli loss model without
retransmissions, i.e., if L = 1.

As a result of these trends, there is a crossover of the
delivery ratio values of the end-to-end and the hop-by-hop
transport protocol. Note that in the plot, this crossover can
only be seen for q = 0.2, where it occurs around E[B] = 2.7.

Concerning the number of link transmissions given in the
bottom plot of Fig. 5, the hop-by-hop scheme results in a
lower number of link transmissions for both values of q. It
has a maximum at a certain value of the disruption duration
that could be characterized by a sharp decrease in the de-
livery ratio. The end-to-end protocol spends an increasing
number of link transmissions as the disruption durations be-
come longer; even at a value of E[B] where the delivery ratio
is close to the performance floor, E[Txe] is still increasing.

Hop-by-hop transport under short disruption du-
rations. The higher delivery ratio of the hop-by-hop proto-
col for short disruption periods can be explained analytically.
Irrespective of the number of transmissions, the delivery ra-
tio of the hop-by-hop scheme always begins at the same value
for E[B] = 1; E[B] = 1 implies that pbg = 1, i.e., every time

the link enters the off state, it will stay there for one time
slot. Therefore, with rto(k) = 1, k = 1, 2, . . . , L − 1, for ev-
ery L ≥ 2, the probabilities P n

i,L in (8) equal PG for n = 1,
PB for n = 2, and 0 for n > 2, the probabilities P succ

i,L in (9)
become 1 and the number of expected link transmissions in
(10) reduces to

E[Txh] =
H
X

i=1

E[Mh
i,L] =

H
X

i=1

(P i
G + 2 · (1 − P i

G))

which is independent of L for short disruptions.
However, if E[B] is longer than the transmission period

T h
Tx, the hop-by-hop protocol collapses because a necessary

condition for successful delivery is that no hop be disrupted
longer than T h

Tx.
End-to-end transport under long disruption dura-

tions. Since the end-to-end scheme covers a longer period
with its transmission attempts, it is more likely to be still
transmitting when a disrupted hop has switched to the on
state. We investigated the performance of both schemes also
with only three instead of five hops and found that the deliv-
ery ratio is higher for short mean disruption durations but
drops at considerably lower values of E[B]. This is due to
the definition of the retransmission timeout of the end-to-
end scheme, which depends on the number of hops; and with
three hops, the transmission period covers only 2H ·L = 30
instead of 50 slots.

Performance floor of delivery ratio. The perfor-
mance floor that both protocols approach as the mean dis-
ruption duration increases is a result of the strong positive
correlation in the loss process for high values of E[B]. Since
the probability of switching from the off to the on state
is the inverse of the mean duration of the off state, i.e.,
pbg = 1/E[B], this probability approaches zero as E[B] in-
creases. The same holds for pgb and E[G]. For large values
of E[B], the loss rate q, which is also the probability of find-
ing the hop in the off state, determines success or failure of
a transmission, independent of when this transmission oc-
curs. The limited number of transmission attempts are likely
to all occur during a period where the links do not switch
from one to the other state; thus either the first transmis-
sion succeeds, or none of the retransmissions will succeed
either. Therefore, at high values of E[B], the delivery ratio
is the same with both protocols and is equal to that under
Bernoulli loss without retransmissions.

Crossover of end-to-end and hop-by-hop transport.
The crossover between the curves of the two schemes (for
q = 0.2 at E[B] = 2.7) highlights the two physical properties
governing the relative performance of these schemes. The
first is the work conservation of hop-by-hop, which crosses
each hop only once; this property is not shared by end-to-end
and thus hop-by-hop enjoys a relative advantage. The sec-
ond is the relative length of the transmission period and the
disruption period. Having the transmission period longer
than the disruption period is an advantage since if the trans-
mission period is too short, packet retransmissions are likely
to fail. As the hop-by-hop scheme we employ sends retrans-
mitted packets in consecutive time slots, it is susceptible to
lengthy disruption periods. The end-to-end scheme spaces
retransmissions over time because it requires a longer re-
transmission timeout and thus has a relative advantage in
this range.

The susceptibility of hop-by-hop transport to the disrup-



tion duration can be amended by increasing its transmis-
sion period. One way to achieve this would be to increase
the transmission limit L; however, at high values of q, this
change would also result in a much higher number of link
transmissions. As a more efficient alternative, we investi-
gate in the next subsection a hop-by-hop scheme that delib-
erately spaces retransmissions over time, aiming to cover a
larger period transmitting with the same number of trans-
mission attempts. We expect that such a scheme should be
better equipped to perform well in intermittent-connectivity
scenarios where we expect periods of disruption to be exten-
sive.

4.2 Spaced hop-by-hop transport
We compare with the two previously studied schemes a

protocol that is the same as the hop-by-hop scheme except
that we introduce an idle period between successive trans-
mission attempts by increasing the retransmission timeout
period. In the following, we refer to this scheme as spaced
hop-by-hop transport and denote quantities relating to it
by the superscript s. When referring to the previously in-
troduced hop-by-hop protocol, we may add the qualifier
basic for clarity. For the spaced hop-by-hop protocol, we
choose the retransmission timeout to be considerably longer
than the minimum value of T h

RTO = 1 we use in the basic
hop-by-hop scheme and set it equal to that of the end-to-
end protocol, i.e., T s

RTO = TRTT = 2H time slots. Under
this setting, the transmission period of spaced hop-by-hop
transport is equal to that of the end-to-end scheme, i.e.,
T s

Tx = 2H · L = 50 time slots.
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Figure 6: Spaced hop-by-hop vs. hop-by-hop vs. end-
to-end transport. q = 0.2

In Fig. 6 we plot the delivery ratio and the expected num-
ber of link transmissions as a function of the disruption du-
ration, for q = 0.2. The delivery ratio of spaced hop-by-hop
at E[B] = 1 is slightly lower than that of basic hop-by-hop,
but it is much less sensitive to the mean disruption duration,

resulting in a substantially higher delivery ratio for medium
and long disruption durations. Compared to the end-to-
end protocol, we see that the spaced hop-by-hop protocol
achieves a higher delivery ratio for all values of the mean
disruption duration. As E[B] increases, all three schemes
approach the performance floor discussed in the previous
subsection.

Regarding the number of link transmissions spent per
packet E[Tx], both hop-by-hop protocols spend about the
same number of transmission and the maximum value of
the spaced hop-by-hop scheme is located at a higher value
of E[B]. For all values of E[B], E[Tx] is lower with both
hop-by-hop protocols than with the end-to-end protocol.

We also evaluate the spaced hop-by-hop protocol at q =
0.05, but in order to highlight differences among the schemes,
we allow at most one retransmission. In Fig. 7 we plot the
delivery ratio as a function of the disruption duration, for
q = 0.05 with a maximum of L = 2 transmissions. Note that
in this plot the range on the vertical axis is not [0, 1] but
[0.75, 1]. The basic hop-by-hop scheme reaches a delivery
ratio close to one at a disruption duration of E[B] = 1. At
this value of E[B], the spaced hop-by-hop protocol reaches
only a maximum delivery ratio of 98.8% and the end-to-end
protocol is limited to 94.9%. As E[B] increases, the delivery
ratio of the basic hop-by-hop protocol immediately declines
whereas the ratio of spaced hop-by-hop and end-to-end only
drop around E[B] = 4. The spaced hop-by-hop protocol
provides a higher delivery ratio than both the end-to-end
and the basic hop-by-hop protocol for the full range of mean
disruption durations we evaluate.
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Figure 7: Spaced hop-by-hop vs. hop-by-hop vs. end-
to-end transport. q = 0.05,L = 2

Basic vs. spaced hop-by-hop at short disruption
durations. As shown analytically in Sec. 4.1, the high
delivery ratio of the basic hop-by-hop protocol for short dis-
ruption periods is due to its retransmission policy that sends
packets back-to-back. The relative performance between the
basic hop-by-hop protocol and the spaced hop-by-hop pro-
tocol changes at the point where the correlation of the loss
process switches from negative to positive, i.e., where the
correlation is zero and pgb + pbg = 1 (cf. Sec. 3.1.1). For all
greater values of E[B], spaced hop-by-hop provides a higher
delivery ratio than basic hop-by-hop. Under the on/off loss
model, we can define analytically the range of disruption du-
rations where it pays off to retransmit packets back-to-back
(basic hop-by-hop) and where it is more beneficial to space
transmission attempts over time (spaced hop-by-hop). For
q = 0.05, the on/off loss process is negatively correlated for
values of E[B] < 1/(1 − q) = 1/0.95 = 1.05; and within
this range, basic hop-by-hop dominates spaced hop-by-hop.
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Figure 8: Exponential vs. constant retransmission
timeout. q = 0.2

For larger values of E[B], the correlation is positive and it
pays off to space transmission attempts over time; thus the
spaced hop-by-hop protocol dominates the basic variant for
all values of E[B] > 1/(1 − q).

Spaced hop-by-hop vs. end-to-end transport. If
the retransmission timeout of the spaced hop-by-hop proto-
col is equal to that of the end-to-end protocol, we observe
that spaced hop-by-hop dominates the end-to-end scheme in
delivery ratio and expected number of link transmissions for
both settings of q and for all values of E[B] we consider.

We are currently attempting to establish these two dom-
inance relationships fundamentally and we summarize our
preliminary results in Sec. 5. The results of the spaced hop-
by-hop protocol support our previous observation that the
transmission period TTx determines to a large extent the
response of a protocol to extensive periods of disruption.
The spaced hop-by-hop and the end-to-end protocol can be
tuned to a given disruption duration by adjusting L and
rto(k). However, in real-world mobile scenarios, the trans-
mission limit cannot be arbitrarily high due to interference
concerns and energy constraints. Moreover, the duration of
disruptions is in general not known a priori. Therefore, most
real-world implementations of retransmission protocols be-
gin with a low retransmission timeout and then gradually
increase it if the disruption persists. In the next section, we
compare end-to-end and spaced hop-by-hop transport with
constant and increasing retransmission timeout policies.

4.3 Exponential RTO
We compare the previously introduced end-to-end and

spaced hop-by-hop scheme with both, a constant retrans-
mission timeout rto(k) := 2H, k = 1, 2, . . . , L− 1 and an ex-
ponentially increasing timeout, defined by rto(k) := TRTT ·
2k−1 = 2H · 2k−1. Thus, the exponential schemes have a
timeout that starts at the same value of rto(1) = 2H ·20 = 10
as the constant schemes, but then doubles for every re-

transmission, reaching a maximum of rto(4) = 2H · 23 =
80 time slots between the fourth and fifth transmission at-
tempt. Under this policy, the transmission period is given
by
PL−1

k=1 2H · 2k−1 = 150 time slots.
In Fig. 8, we plot the delivery ratio and the expected num-

ber of link transmissions for the end-to-end and the spaced
hop-by-hop scheme under both a constant and an exponen-
tial retransmission timeout policy. We find that if both
schemes employ the same retransmission policy, the spaced
hop-by-hop scheme dominates end-to-end both in terms of
delivery ratio and expected number of link transmissions
over the whole range of E[B] we consider. In the next sec-
tion, we will draw conclusions from these results and discuss
the limitations of the current model and outline future work.

5. DISCUSSION AND CONCLUSIONS
In the following, by hop-by-hop transport, we refer to the

general concept of hop-by-hop transport; when we talk about
a specific protocol implementation, we use the terms basic
or spaced hop-by-hop protocol. We summarize below the
main results coming out of the analysis in Sec. 3 and the
numerical results presented in the previous section:

Delivery ratio The delivery ratio of the basic hop-by-
hop tends to be higher than that of the end-to-end scheme
for short disruption periods and lower for long periods. The
performance of the schemes converges at infinite disruption
duration, where the performance of both schemes resembles
that under Bernoulli loss and no retransmissions. Consider-
ing spaced hop-by-hop we find that:

• The delivery ratio of spaced hop-by-hop is higher than
that of end-to-end for all conditions studied.

• The delivery ratio of spaced hop-by-hop is higher than
that of basic hop-by-hop in the region where the corre-
lation of the loss process is positive (see Sec. 3.1.1 for
the definition of positive correlation). It is lower when
the correlation is negative.

Number of link transmissions The spaced hop-by-hop
protocol always results in fewer link transmissions than the
end-to-end scheme. Fewer retransmissions imply lower inter-
ference levels in the network and energy savings for the of-
ten power-constrained network nodes. In combination with
the dominance in terms of delivery ratio, spaced hop-by-hop
emerges as the most efficient transport alternative.

We are currently continuing the analytical work in this pa-
per to draw definitive conclusions about the relative perfor-
mance of the transport schemes we discussed. Preliminary
results suggest that:

• If the spaced hop-by-hop and the end-to-end protocol
use the same retransmission timeout policy, then there
is full dominance of spaced hop-by-hop over end-
to-end transport in terms of delivery ratio, expected
number of link retransmissions, but also packet deliv-
ery latency, a metric that has not been looked into in
this paper.

• For any spaced hop-by-hop policy with a retransmis-
sion timeout greater than one, there is full domi-
nance of spaced hop-by-hop over basic hop-by-
hop transport as long as the loss process is positively
correlated, i.e., when E[B] > 1/(1−q) ⇔ pbg +pgb < 1

We intend to report on these results in a forthcoming paper.



5.1 Limitations of the model and future work
Our current models and analysis fail to capture the dy-

namics of the nodes on the path between the source and the
destination. Node mobility and the operation of the underly-
ing routing protocol may result in changes of the path length
amidst the packet transfer. The absorbing Markov processes
can be expanded to capture path length changes, although
they cannot account for the change in the link states along
the new path. We are currently working on implementing
this extension.

A harder limitation of the current modeling framework is
the assumption of independence in the link availability of
successive hops (strictly speaking, the loss process in suc-
cessive hops). This assumption may hold when different
radio channels, spaced in time and/or frequency, are used
over neighboring hops. However, in all real-world networks,
interference between successive links results in substantial
correlation amongst the transmission and loss processes in
neighboring hops.

Finally, and relevant to the previous limitation, the work
in this paper has considered a chain topology scenario with
a single source–destination pair. Carrying out the compar-
ison between the end-to-end and the hop-by-hop transport
paradigm at the network-level, considering the distribution
of nodes in space and the lengths of resulting paths, would
reveal the impact of the transport scheme on system-level
metrics such as the network capacity. We have already be-
gun exploring this research direction, which necessitates a
different modeling framework than the one presented in this
paper.

6. SUMMARY
We investigated the performance of end-to-end vs. hop-

by-hop transport under intermittent connectivity using an
analytical model. Our model captures periods of connec-
tivity and disconnection with a two-state loss process. To
determine the effectiveness of these schemes, we evaluated
the probability of successful delivery and the expected num-
ber of link-layer transmissions under a limited number of
transmission attempts.

We introduced the spaced hop-by-hop scheme and ob-
served that it dominates the end-to-end scheme for all val-
ues of disruption duration. Moreover, the spaced scheme
dominates the basic hop-by-hop scheme for all values of dis-
ruption duration where the correlation of the loss process is
positive (i.e., if the disruption durations are relatively long).

We are currently extending our analysis; preliminary re-
sults suggest that there is full dominance of spaced hop-
by-hop over end-to-end transport in terms of probability of
delivery, expected number of link transmissions, and end-to-
end latency. The details of these results are to appear in a
forthcoming paper.
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