On Leveraging Partial Paths in Partially-Connected Networks

Simon Heimlicher, Merkouris Karaliopoulos, Hanoch Levy* and Thrasyvoulos Spyropoulos
Computer Engineering and Networks Laboratory
ETH Zurich, Switzerland

* Hanoch Levy is on leave absence from the School of Computer Science, Tel Aviv University, Israel

Abstract—Mobile wireless network research focuses on scenarios at the extremes of the network connectivity continuum where the probability of all nodes being connected is either close to unity, assuming connected paths between all nodes (mobile ad hoc networks), or it is close to zero, assuming no multi-hop paths exist at all (delay-tolerant networks). In this paper, we argue that a sizable fraction of networks lies between these extremes, and are characterized by the existence of partial paths, i.e., multi-hop path segments that allow forwarding data closer to the destination even when no end-to-end path is available. A fundamental issue in such networks is dealing with disruptions of end-to-end paths. Under a stochastic model, we compare the performance of the established end-to-end retransmission (ignoring partial paths), against a forwarding mechanism that leverages partial paths to forward data closer to the destination even during disruption periods. Perhaps surprisingly, the alternative mechanism is not necessarily superior. However, under a stochastic monotonicity condition between current vs. future path length, which we demonstrate to hold in typical network models, we manage to prove superiority of the alternative mechanism in stochastic dominance terms. We believe that this study could serve as a foundation to design more efficient data transfer protocols for partially-connected networks, which could potentially help reducing the gap between applications that can be supported over disconnected networks and those requiring full connectivity.

I. INTRODUCTION

More and more people nowadays carry a device with wireless networking capabilities. The majority of laptops, organizers, and other portable devices provide wireless networking; whereas in the cellular phone market this feature is trickling down from smart phones to the mainstream. Such devices traditionally need infrastructure networks to communicate with each other, using protocol optimizations of the TCP/IP suite to make up for the additional challenges of wireless environments [1]. Nevertheless, their increasing ubiquity creates opportunities for networking such devices “on the fly” or in “ad hoc” node, bypassing or extending infrastructure, for applications ranging from social networks to multi-player gaming.

However, operating such a network of mobile nodes in ad hoc mode (traditionally called a MANET (Mobile Ad Hoc Network) presents a number of challenges for transport and routing protocols. Initially, it was commonly assumed that MANETs are always connected, i.e. each node has an end-to-end path to every other node with probability one; various mechanisms were proposed to discover and maintain such paths, and traditional transport mechanisms (or modifications) were assumed to provide support for all known applications. Yet, frequent path changes resulting from node mobility, wireless propagation effects, nodes powering down, etc. induce a significant overhead and performance penalty for these protocols as opposed to the infrastructure-based counterparts. What is more, it has been recently recognized that, when network density becomes lower, these networks experience frequent disconnections, implying that no end-to-end paths exist most of the time, or connectivity occurs with probability zero. At this end of the connectivity continuum, nodes are assumed to be relatively isolated; in occasional node encounters (“contacts”), forwarding decisions are made speculatively trying to predict future contacts with the destination (e.g., based on mobility patterns, social relationships, etc.), but with no knowledge about end-to-end paths. As a result, only few asynchronous applications with high tolerance in delay can be supported under this network model, commonly referred to as DTN (Delay Tolerant Networking).

In this work we argue that there is a sizable region in between the two extremes of the network connectivity continuum, where the network is not connected (and thus MANET protocols suffer), yet more optimistic assumptions are in order than commonly made in DTNs. In a partially-connected network, nodes may not always be able to reach all other nodes, still they can reach a subset of them. If this subset is sufficiently variable over time, e.g., due to node mobility, then there will be multi-hop path segments that can be used to forward data closer to the destination node, even during periods where the full path is disrupted. We refer to such path segments as partial paths.

Partial paths correspond to additional transmission opportunities that can be exploited by known network data forwarding mechanisms such as hop-by-hop transport protocols [2], [3] and route salvaging mechanisms (for example, [4]) proposed in the context of MANET routing, in order to achieve more efficient data transport over these networks. This is in stark contrast to most algorithms proposed for DTNs [5] that only exploit single-hop paths at a time. Specifically, given a path breaks after the message has traversed a partial segment of it, the crucial question we are interested in answering is whether to try forwarding data from the intermediate node before the breakage (intermediate forwarding) or from the source node (source forwarding). Whereas the superiority of the former might be “intuitively” clear in a network with fixed topology, it is not obvious in a network whose topology...
vares stochastically due to frequent link failures and node movements. Our work, therefore, intentionally focuses on the concept of partial paths and these two basic mechanisms rather than on particular protocols. Specifically, we argue for the existence of partial paths, and analytically explore what are the conditions under which “intermediate forwarding” or “local recovery” techniques like the above would result in more efficient data forwarding in partially-connected networks.

The main contributions of this paper are as follows. First, we demonstrate in Sec. II that partial paths do exist under a wide range of network conditions. Further, when a path breaks at an intermediate point, either an alternate partial path from this point towards the destination exists or the intermediate hop will have to “wait” until a new partial path for the remaining distance arises. In this case, performance will depend on the alternate route length (hop count) statistics and its relation to the primary route length. Using the network model introduced in Sec. III, we show in Sec. IV that—counter to intuition—if the alternate route length is positively correlated with the primary length, or even if the expected value of the alternate route length is monotonically increasing in the primary route length, superiority does not necessarily hold. Nonetheless, we are able to show that if the length of the alternate route stochastically monotonically increases in the length of the primary route, then the time to deliver a packet under source forwarding stochastically dominates the time under intermediate forwarding. In Sec. V, we introduce the fundamentals of stochastic dominance and stochastic monotonicity and then use them to derive this claim. Finally, in Sec. VI we provide strong evidence that the alternate route length is indeed stochastically monotonic in the primary route length—leading to the expected result of superiority.

II. UNDER WHICH CONDITIONS ARE NETWORKS PARTIALLY-CONNECTED?

In this section, we shed more light into the existence of “partially-connected” networks. Specifically, we are interested in identifying whether scenarios exist where networks are disconnected (and thus MANET approaches would not be applicable or efficient), but still have sufficiently large connected components with partial paths of more than one hops (that DTN approaches would ignore).

A. Partial Paths in Stochastic Network Models

We have looked into the network connectivity dynamics using Monte Carlo simulations. We spread \(N \) nodes uniformly over a toroidal area \(A \) and add links between pairs of them according to the geometric link model, i.e., a link between two nodes exists as long as their distance is smaller than the node transmission range \(r_0 \). We vary \(A \) to obtain the desired network density, expressed by the expected node degree \(d \) as \(d = \frac{(N-1) \pi r_0^2}{A} \). For each \(\{N, A\} \) tuple, simulations are repeated \(M = 10^5 \) times with different seeds, each time yielding a different snapshot of node distribution in \(A \).

It is well-known by percolation results [6] that, for asymptotically large networks, connectivity exhibits a sharp phase-transition with respect to node density. Either almost all nodes are connected into a large cluster (connected regime) or all nodes are isolated into many much smaller clusters (disconnected regime). Nevertheless, for finite \(N \) values, we argue that this phase transition is less sharp. Specifically, a non-negligible range of network density values exists where sizable clusters are formed; each node can reach a non-negligible subset of other nodes (but not all) using partial paths of multiple connected hops. To demonstrate this, we estimate and plot the following three quantities:

- Connectivity probability, \(C \): it is the probability that each node can reach every other node via a connected path, estimated as the ratio of the connected topologies over the full set size \(M \) of random topologies [7].
- Reachability, \(R \): For each random topology, it equals the fraction of connected node pairs [8].\(^1\)
- Mean path length, \(P \): For each random topology, it denotes the average length of the shortest path in number of hops, considering all connected node pairs.

The plotted values for \(R \) and \(P \) are their averages over all \(M \) random topologies.

In Fig. 1, we show how \(C, R, \) and \(P \) vary with the node degree for \(N = 100 \) nodes. Observe that both the connectivity probability and reachability exhibit a phase transition, albeit at different values on the node degree axis. Whereas the connectivity probability goes from zero to one in the interval \(d = 4..20 \), reachability increases more sharply in \(d = 1..12 \).

The sizable region of network density values where connectivity lies between zero and one represents the area of partially-connected networks, situated in between the (very) sparse networks commonly studied in the DTN community

\(^1\)Note that an identical metric had been proposed earlier under the name “connectivity index” in [9]. Irrespective of its name, the metric serves as a less pessimistic measure of the communication capabilities provided by a sparsely-connected ad hoc network.
and the highly-connected networks studied in the MANET context. Note that the mean length of the shortest path in the partially-connected region is greater than two; hence, the assumption that there are no multi-hop paths is too pessimistic even when \(d = 1 \). Below, we identify four areas of interest in the connectivity spectrum and explain whether and how intermediate forwarding can be applied in each:

Area 1: (Connectivity $\rightarrow 1$, Reachability $\rightarrow 1$) This is the area (far right) commonly dealt with by MANET research, where end-to-end paths are assumed to exist most of the time. Yet, when the network is very dynamic (e.g., high node mobility), the initial path often breaks while the message is en route. In this case, rather than dropping the message after it has traversed a partial path, intermediate forwarding can re-route it from that node on through an alternate path that the routing protocol has cached or will discover after the break. This mechanism is traditionally called *salvaging* in the MANET literature, and is analyzed theoretically in Sec. V (Thm. 4).

Area 2: (0 $< \text{Connectivity} < 1$, Reachability > 0) Nodes have end-to-end connectivity only for some fraction of time. During this fraction, a tentative end-to-end routing path between the source and destination nodes can be established, but for the remainder of the time this path is disrupted with only disconnected segments (referred to as partial paths) of it being up each time. Using intermediate forwarding, nodes at the end points of these partial paths can store en route data for the duration of the disruption and wait until a new partial path comes up that allows to continue forwarding the data towards the destination. We compare the performance of such intermediate forwarding against source forwarding analytically in Sec. V (Thm. 5).

Area 3: (Connectivity $\rightarrow 0$, Reachability > 0) The network is always partitioned. Nevertheless, node density is high enough that each node can reach a non-negligible number of other nodes within the same connected component (cluster) using multi-hop partial paths. In this context, DTN algorithms are usually applied or hybrid DTN/MANET schemes (MANET routing when the destination is in the same cluster, and DTN routing if outside the cluster) [10] [11]. We believe that one could still take advantage of existing partial paths using an appropriately modified version of intermediate forwarding, and outperform existing proposals. However, we defer this study for future work.

Area 4: (Connectivity $\rightarrow 0$, Reachability $\rightarrow 0$) Nodes are essentially isolated. Forwarding opportunities arise only when two nodes come in contact (e.g., through mobility), but multi-hop paths are rare. Such sparse networks are properly treated by DTN schemes.

Summarizing, even for homogeneously distributed nodes, there is a significant region of network density where a substantial portion of nodes are connected by multi-hop paths even if the connectivity probability is negligible. In the remainder of the paper, we will show how this property allows one to perform significantly better using local recovery methods to route around disruptions instead of relying on end-to-end mechanisms.

B. Partial Paths in Real-life Scenarios

Real-life networks are usually not uniform; either the network area structure, or the node distribution in it, or both may be non-uniform in many scenarios. Examples include campus scenarios where nodes accumulate in areas of interest (e.g., library, cafeteria, classrooms) with less connectivity available between these areas [12], and vehicular networks where nodes tend to gather at specific locations, e.g., due to decelerating or stopping at junctions or traffic lights [10]. This creates concentrations of nodes (clusters) in specific network locations, thus yielding even more opportunities for multi-hop forwarding than the uniform node distribution model predicts.

C. Discovering Partial Paths

Given that partial paths exist, actually discovering and using them requires a routing algorithm. For source forwarding, we assume the use of some established routing algorithm; however, in order to be able to use partial paths, intermediate forwarding requires a different routing algorithm. We believe that neither DTN nor MANET algorithms can directly be applied for this task. We are currently working on a suitable algorithm and studying analytically its properties in terms of correctness, convergence, and performance. The key idea and main difference to existing algorithms in the MANET area is to *not* report route failures; instead, information about broken routes is still propagated. This allows nodes to keep forwarding data along those segments of broken routes that are still intact as far as possible towards the destination. Upon reaching the point of failure, packets are stored until a new—complete or partial—route becomes available, allowing further progress.

The selection among broken paths could be based on metrics such as those studied in the context of DTN routing, e.g., age of last encounter [13] or frequency of past encounters [14]. But in contrast to DTN routing, these metrics would not only be used to discriminate among neighbors but to select among *multi-hop* path segments.

III. MODELING SOURCE VS. INTERMEDIATE FORWARDING

We present our modeling assumptions for the network and the two forwarding mechanisms under investigation; they are common to all analytical arguments made in the remainder of this paper. As outlined in the previous section, we consider a scenario with a set of mobile nodes where partial paths exist and can be discovered by a routing protocol.

A. Network Model

In our model, time is slotted and we trace packets being transmitted from a source to a destination node. The random variable (r.v.) \(H(t) \) describes the hop count along the active or *primary route* from the node holding the packet to the destination in time slot \(t \). We will use the term *position* to refer to the specific node that is *according to the routing protocol* at a certain hop distance to the destination, the destination being at position 0. Over time, the primary route may break and an *alternate route* needs to be determined, which will then become the new primary route. We call the lifecycles

\[\text{Connectivity} \rightarrow \text{Reachability} \]
of routes transmission periods and describe them by the outcomes of three random variables \(W(l) = w(l), A(l) = a(l), \) and \(X(l) = x(l), l = 1, 2, \ldots \) as depicted in Fig. 2. The lifecycle of transmission period \(l \) begins with the time required for a path to become available and the routing protocol to establish the route, modeled by \(w(l) = 0, 1, \ldots \) wait time slots. The event of route establishment is represented by a switch time slot, in which the packet switches to the position \(a(l) = 1, 2, \ldots \) that corresponds to the length of this route. From this position, the packet is transmitted to positions \(a(l) - 1, a(l) - 2, \ldots, a(l) - x(l) \) in a sequence of \(x(l) = 0, 1, \ldots, a(l) \) transmission ("xmission") time slots. The packet reaches the destination (position 0) in the earliest transmission period where \(a(l) - x(l) = 0 \). Every packet begins at initial hop distance \(a(1) \); the initial wait time is \(w(1) = 0 \).

Regarding the distributions of these r.v.s, we assume that the link at the current position of a packet is up with probability \(p \) or down with probability \(1 - p \), hence the distribution of r.v. \(X \) is geometric. For the waiting time \(W \) and length of the alternate route \(A \), we will assume that they depend only on the length of the primary route, i.e., the position of the node requesting the alternate route. As will be described next, which node requests the alternate route is where the source and intermediate forwarding mechanisms differ.

B. Source and Intermediate Forwarding

Consider a packet that begins transmission period \(l \) at some position \(a(l) > 0 \) (the source node), and is then transmitted across \(x(l) > 0 \) hops until it gets stuck at an intermediate node at position \(a(l) - x(l) > 0 \). Now, under source forwarding (SrcFwd), the intermediate node discards the packet and the source node requests an alternative route to the destination; hence the distribution of \(W(l + 1) \) and \(A(l + 1) \) is conditioned on \(a(l) \). In contrast, under intermediate forwarding (IntFwd), the intermediate node stores the packet and requests an alternative partial route from itself to the destination; thus the distribution of \(W(l + 1) \) and \(A(l + 1) \) is conditioned on \(a(l) - x(l) \). This is the only difference between the two forwarding mechanisms, hence the relationship between the length of the primary and the alternate route determines the advantage of intermediate forwarding.

IV. IntFwd Not Necessarily Superior

In our model, source and intermediate forwarding differ as to which node continues forwarding a packet when the primary route fails; in particular, the length of the alternate route depends on the length of the primary route from the requester to the destination. In this section, we use r.v. \(H \) to describe the length of the primary route, \(A \) for the alternative route, and \(A_h \) to describe the length of the alternate route conditioned on the primary route having length \(h \). We are interested in a sufficient condition on this relationship to guarantee that intermediate forwarding is faster than source forwarding. Such a condition must guarantee that the time to forward a packet to the destination along a route of given length \(h \), denoted by \(T_h \), is monotonically increasing in \(h \), i.e., \(T_k \geq T_j \) holds for every \(k > j \).

Contrary to intuition, even if the length of the alternate route is tightly related to that of the primary route, monotonicity does not necessarily hold. In this section, we show that neither the positive correlation between alternate and primary route length (Thm. 1) nor the monotonic increase of the expected alternate route length in the primary route length (Thm. 2), are sufficient conditions.

Theorem 1. Assume that the length of the alternate route is positively correlated with the length of the primary route, i.e., the correlation coefficient of r.v.s \(H \) and \(A \), \(\rho_{HA} > 0 \). Then, \(T_k \geq T_j \) does not necessarily hold for every \(k > j \).

Proof: By counter example. Let the primary route length take values 1 to 4 with equal probability. Assume that the corresponding alternate route lengths \(A_h \) are related to the primary route lengths through the following conditional distribution: \(1 = 1, A_2 = 4, A_3 = 1, \) and \(A_4 = 4 \), all with probability one (cf. Fig. 3).

Observe that alternate and primary route length are positively correlated with correlation coefficient \(\rho_{HA} = 1/\sqrt{\pi} > 0 \). To derive this, we used \(\rho_{HA} = \sigma_{HA}/(\sigma_H \sigma_A) \), where \(\sigma_{HA} = \sum_{k} \sum_{l} ((h_k - \mu_H)(a_l - \mu_A)) \text{Pr}(H = h_k, A = a_l) \).

Despite the positive correlation, the alternate route of \(H_2 \) is four hops, whereas the one of \(H_3 \) is only one hop. The expected values of the time to destination \(T_k \) coincide with the mean times to absorption starting from position \(k \), when viewing the node chain as an absorbing Markov chain with a single absorbing state (destination node)(cf. [15] for the complete derivation). Using this, we can relate \(T_3 \) and \(T_2 \) with the following equation:

\[
T_2 - T_3 = \frac{1 + 2p}{p^2} - \frac{2p^2 + 2}{p^3 - p^2 + p}
\]
This implies that $T_3 < T_2$ for all values of $p \in (0, (\sqrt{3} - 1)/2)$; in other words, T_h is not monotonically increasing in h. □

Next we show that even the expected alternate route length being monotonically increasing in the primary route length does not guarantee that T_h is monotonically increasing in h.

Fig. 4: Counter example for monotonicity of expected length of the alternate route in primary route length.

Theorem 2. Assume $E[A_k] \geq E[A_j]$ for every $k > j$. Then $T_k \geq T_j$ does not necessarily hold for every $k > j$.

Proof: By counter example. Let the primary route length take values 1, 2, or 3; the alternate route lengths are $A_1 = 1, A_2 = 2$, each with probability one, whereas $A_3 = 3$ with probability α and $A_3 = 1$ with probability $1 - \alpha$ (cf. Fig. 4).

Observe that the expected length of the alternate route is monotonically increasing in the length of the primary route as long as $1/2 < \alpha < 1$: $E[A_k] = 1, 2, 2\alpha + 1$, for $k = 1, 2, 3$, respectively. Yet a packet at H_3 may cut through to H_1 with non-negligible probability $(1 - \alpha)(1 - p)$. Invoking again the absorbing Markov chain argument, as in Thm. 2, it can be shown (cf. [15]) that:

$$T_2 - T_3 = \frac{2 - \alpha}{p} - \frac{3}{1 - \alpha + \alpha p}.$$

implying that $T_3 < T_2$ for all values of $p \in (0, (2 - 2\alpha)/(1 - 2\alpha))$. Consider, e.g., $\alpha = 5/8$ and $p = 1/3$, then $T_k = 5, 10, 6$ for $k = 1, 2, 3$, which is not monotonically increasing in k. □

V. INT_FWD SUPERIOR GIVEN

STOCHASTIC MONOTONICITY OF ROUTE LENGTH

We now turn to a condition, stochastic monotonicity, which as we will show yields that the time to deliver a packet to the destination under source forwarding stochastically dominates that under intermediate forwarding. We first introduce the concept of stochastic monotonicity and derive a fundamental result on its transitivity; we then use this result to prove the above claim, first under the assumption of immediate availability of alternate routes, then under a relaxed assumption.

Definition 1 (Stochastic Dominance — Stochastic Monotonicity). An r.v. X stochastically dominates r.v. Y, written as $X \succeq Y$, if $\Pr[X > t] \geq \Pr[Y > t]$ ∀ t, or equivalently if $F_X(t) \leq F_Y(t)$ ∀ t. Drawing on the stochastic dominance concept, we define stochastic monotonicity. An r.v. X is stochastically monotonic in r.v. A, written as $X \succeq_A A$, if $\Pr[X \geq x | A = a_1] \geq \Pr[X \geq x | A = a_0]$ ∀ $a_1 > a_0$; or if $F_{X|A}(x|A = a_1) \leq F_{X|A}(x|A = a_0)$ ∀ $a_1 > a_0$.

2This is also referred to as First-order Stochastic Dominance, e.g., [16].

Stochastic monotonicity is transitive under the conditions outlined in Lem. 1.

Lemma 1. Let X, Y, Z be r.v.s with strictly monotonic and continuously differentiable cumulative distribution functions (CDF). Then $Y \succeq X$ implies $Z \succeq X$ if the following holds:

$$F_{Z|Y,X}(z|Y = y_1, X = x_1) \leq F_{Z|Y,X}(z|Y = y_0, X = x_0)$$

∀ $y_1 > y_0, x_1 > x_0$.

The proof is based on the law of total probability and provided in [15]. In the following, we are mainly interested in the corollary below, emerging from Lem. 1 as the special case where r.v. Z only depends on r.v. X via Y.

Corollary 1. Let X, Y, Z be r.v.s with strictly monotonic and continuously differentiable CDFs. If $Y \succeq X$, and $Z \succeq Y$, then $Z \succeq X$ if $F_{Z|Y,X} = F_{Z|Y}$.

We now use these concepts to compare source and intermediate forwarding, based on the network model and notation from Sec. III and under the following assumption.

Assumption 1 (Alternate route length). The distribution of the alternate route length A is time-invariant and is stochastically monotonic in the primary route length H, i.e., $A \succeq_H H$, or equivalently if F_A denotes the CDF of A, then $F_{A|H}(a|H = k) \leq F_{A|H}(a|H = j)$ for every $k > j$.

Evidence that this assumption holds in a sizable subset of networks is provided in Sec. VI.

A. Immediate Route Discovery

In this part, we assume that alternate routes can be determined immediately, corresponding to Area 1 (Sec. II); this assumption is relaxed in Sec. V-B.

Assumption 2 (Immediate route discovery). The alternate route is available immediately, allowing the packet to continue along the alternate route in the subsequent time slot.

We will trace two packets, packet S forwarded by $SrcFwd$ and packet I forwarded by $IntFwd$; when referring to one of them, we will use corresponding superscripts S and I as appropriate. We will show that the time required to deliver a packet under $SrcFwd$, stochastically dominates the time under $IntFwd$. To this end, we first show in Thm. 3 that if both packets S and I begin at position $a(1)$, the position of packet S stochastically dominates that of packet I in any future time slot τ. We will first prove this claim under the condition that the links at the current positions of the packets are in the same state (up or down) in every time slot $t = 1, 2, \ldots, \tau$; at the end, we will use the law of total probability to show that the unconditional claim holds as well.

Considering Fig. 2 in light of Assm. 2, the waiting periods are nil and transmission periods back-to-back. Hence, we can describe the state of the link at the position the packet visits at time $t = 1, 2, \ldots, \tau$ by a so-called sample path L, as follows.

For a sample path of duration τ time slots, let α denote the number of switch time slots, i.e., time slots where the link

This page contains a detailed analysis of stochastic monotonicity and its implications on route length in networks. It highlights the conditions under which alternate routes can be stochastically dominated by primary routes, providing a theoretical basis for optimizing packet delivery times. The concepts are illustrated with diagrams and mathematical proofs, ensuring a comprehensive understanding of the topic.
on this notation, we will prove the following theorem.

We use notation \(L_k[u] \) to describe a sample path prefix comprising only the first \(u \) elements \(x(1), x(2), \ldots, x(u) \) of \(L \). We will use induction on the length \(u \) of sample path prefix \(L_k[u] \) to show that the following holds for every length \(u = 1, 2, \ldots, \alpha_k \):

\[
A_k^S(u) \succ A_k(u).
\]

Inductive basis. For \(u = 1 \), we have \(A_k^S(1) = A_k^F(1) = a(1) \).

Inductive step. Assume (2) holds for \(u \) and prove for \(u+1 \). For packet \(S \), the distribution of \(A_k^S(u+1) \) depends on the position the packet had in the previous switch time slot, \(a_k^S(u) \), and by Assm. 1, its distribution is given by \(F_{A|H}(a|H = a_k^S(u)) \). For packet \(I \), the corresponding distribution of \(A_k^I(u+1) \) depends on the position the packet reached in the previous transmission period, \(a_k^I(u) - x_k^I(u) \) and hence given by \(F_{A|H}(a|H = a_k^I(u) - x_k^I(u)) \). The inductive assumption \(A_k^S(u) \succ A_k^I(u) \) implies that the position \(A_k^S(u) \) on which the distribution of \(A_k^S(u+1) \) is conditioned stochastically dominates the position \(A_k^I(u) - x_k^I(u) \) on which the distribution of \(A_k^I(u+1) \) is conditioned. Furthermore, the assumption of stochastic monotonicity of \(A \) in \(H \) (Assm. 1), i.e., \(A_k^S(u) \succ A_k^S(u) \) and \(A_k^I(u+1) \succ A_k^I(u) - x_k(u) \) implies (by Cor. 1) that (2) also holds for \(u+1 \).

With (2) valid for every \(u = 1, 2, \ldots, \alpha_k \), if both packets trace identical sample paths, then the claim (1) holds for every switch time slot of these sample paths. The sample paths being identical for both packets also implies that after every switch time slot in which the packets are at positions obeying \(A_k^S(u) \succ A_k^I(u) \), both packets are transmitted simultaneously over the same number of hops given by \(x_k(u) \). This implies that the claim (1) given a sample path \(L_k \) also holds for every transmission time slot, i.e., \(H_k^S(t) \succ H_k^I(t) \), which can be written as

\[
F_{H_k^S}(h,t) \leq F_{H_k^I}(h,t).
\]

Summing over all possible sample paths \(L_k, k = 1, 2, \ldots, 2^\tau \) yields:

\[
F_{H_k^S}(h,t) = \sum_{k=1}^{2^\tau} \Pr[L_k^S] F_{H_k^S}(h,t),
\]

\[
F_{H_k^I}(h,t) = \sum_{k=1}^{2^\tau} \Pr[L_k^I] F_{H_k^I}(h,t).
\]

Since the sample paths are identical, they are equiprobable (\(\Pr[L_k^S] = \Pr[L_k^I] \)); this together with (3) implies \(F_{H_k^S}(h,t) \leq F_{H_k^I}(h,t) \), which is equivalent to the claim.

In the following theorem, we show that the time to the destination of a packet forwarded by \(SrcFwd \) stochastically dominates that of a packet forwarded by \(IntFwd \) if they both start from the same position.

Theorem 4. Let packet \(S \) be forwarded by \(SrcFwd \) and packet \(I \) by \(IntFwd \). If their positions at time 0 are given by \(a(1) \), then their times to the destination obey

\[
T^S(\tau) \succ T^I(\tau) \quad \forall \tau \geq 1.
\]
\textbf{Proof}: Observe, first, that since 0 is the minimal outcome of r.v. \(H \), \(\Pr[H(t) = 0] = \Pr[H(t) \leq 0] \). Second, the probability that a packet reaches the destination by some time \(t \) is the same as the probability that, at time \(t \), the packet is at position \(H(t) = 0 \), i.e., \(\Pr[T \leq t] = \Pr[H(t) = 0] \).

From Thm. 3, \(H^S(\tau) \sim H^I(\tau) \) implies \(\Pr[H^S(\tau) \leq 0] \leq \Pr[H^I(\tau) \leq 0] \), which by the first observation is equivalent to \(\Pr[H^S(\tau) = 0] \leq \Pr[H^I(\tau) = 0] \). By the second observation, this implies \(\Pr[T^S(\tau) \leq \tau] \leq \Pr[T^I(\tau) \leq \tau] \forall \tau \geq 1 \), concluding the proof. \hfill \Box

\textbf{B. Accounting for Stochastic Route Discovery Latency}

Lastly, we relax the assumption that the alternate route is always available immediately. The analysis carried out so far assumes that an alternate route is available immediately upon failure of the primary route. However, in many scenarios (e.g., Area 2 in Sec. II) the intermediate (or source node) will have to wait for some time until an alternate route becomes available. This time mainly depends on the mobility patterns of the nodes and the network density.

In the following, we generalize our analysis by assuming that the time to discover an alternate route is an r.v. \(W \). We will make the following assumptions on \(W \):

\textbf{Assumption 3} (Waiting time). The distribution of \(W \) is time-invariant and may depend on the length of the primary route \(H \), similarly to how the length of the alternate route \(A \) depends on \(H \) by Assm. 1. Specifically, \(W \) is stochastically monotonic in the length of the primary route, i.e., if \(F_W \) denotes the CDF of \(W \), then \(F_{W|H}(w|H = k) \leq F_{W|H}(w|H = j) \) for every \(k > j \).

The assumption of time-invariance holds when the mobility model is stationary and network density is time-invariant. Regarding stochastic monotonicity, we argue as follows: in the worst case, the intermediate hop will have to wait for a time longer than the \textit{mixing time} [17] for the given mobility model and network. In this case the waiting time to find an alternate route for the intermediate and source nodes follows the same distribution; such equality is allowed under our assumption of stochastic monotonicity. Nevertheless, it can be shown that, for many mobility models with high mixing time (e.g., two-dimensional random walk [18]) and sufficiently high node density, the waiting time till a new route is found from an intermediate node is actually smaller than for the source node.

Making these assumptions, we next claim that Thm. 4 still holds, namely that the time to the destination of a packet forwarded by SrcFwd stochastically dominates that of a packet forwarded by IntFwd.

\textbf{Theorem 5}. Under the above assumptions, Thm. 4 holds, namely \(T^S(\tau) \succ T^I(\tau) \forall \tau \geq 1 \).

\textbf{Proof}: Due to space constraints, we only give a sketch of the full proof provided in [15]. The key is to again let packets \(S \) and \(I \) trace pairs of corresponding sample paths and to analyze their time to the destination under this condition. The difference to the previous derivation is that the waiting time, previously zero, is now a random variable and Assm. 3 yields the following: in transmission period \(t + 1 \), the waiting time \(W(t + 1) \) depends on the same position as that of the alternate route length \(A(t + 1) \); namely for SrcFwd it depends on the position of the source, \(a^S(I) \), and for IntFwd it depends on the position of the intermediate node, \(a^I(I) - x^I(l) \). This means that if we know the exact sequence of positions a packet visits till it is delivered to the destination, then we also know for every transmission period the values of \(x(l) \) and \(a(l) \) on which the distribution of \(W(l) \) is conditioned. Therefore, we now use sample paths indexed by \(k = 1, 2, \ldots \) that include both the values of \(x(l) \) and \(a(l) \) and span the entire sequence of positions visited by a packet till its delivery to the destination. Using standard coupling techniques [19], we can match these sample paths, or prefixes thereof, with equal probability in a one-to-one manner. In particular, we match to every sample path of packet \(I \) a prefix of a sample path of packet \(S \) of equal length; this is valid because the sample paths essentially represent all time slots except the waiting time and we can invoke Thm. 4. Given equal probability and length, we can further guarantee the following properties for every pair: (i) \(x^S(l) = x^I(l) \) and (ii) \(a^S(l) \geq a^I(l) \). These properties yield that for every transmission period, we have \(a^S(l) \geq a^I(l) - x^I(l) \), and together with Assm. 3 this implies \(W^S(l + 1) \geq W^I(l + 1) \). Since stochastic dominance is preserved under summation, the claim holds for every pair of sample paths; finally summation over all pairs yields the claim. \hfill \Box

\textbf{VI. STOCHASTIC MONOTONICITY OF ROUTE LENGTH}

Through the analysis in Sec. IV-V, we have demonstrated that the stochastic monotonicity of alternate path length (hop count) in the primary path length is sufficient for intermediate forwarding to outperform source forwarding. We now turn to the question of whether this stochastic monotonicity indeed holds in realistic wireless multi-hop networks. Whereas a rigorous proof along the lines of the analysis in the previous sections appears hard to devise, we draw on available analytical results in literature to argue that such monotonicity exists.

In [20], Ta et al. derive a recursive expression for the probability \(\Phi_k(d) \) that the hop count of the shortest path between two nodes equals \(k \), given their Euclidean distance, \(d \). They assume uniform node distribution and the geometric link model (see Sec. II). From the set of \(\Phi_k(d) \), \(k \in [1, 2, \ldots] \), we may derive the discrete conditional probability distribution function of the shortest path length connecting two nodes for given \(d \) as

\[f_{H|D}(h|D = d) = \sum_k \Phi_k(d) \cdot \delta(h - k), h \in [1, 2, \ldots] \]

where \(\delta(\cdot) \) is Dirac’s delta function. Applying Bayes’ theorem for probability densities (cf. [17]), the conditional probability density function \(f_{D|H}(d|H = h) \) of the Euclidean distance between two points given the number of hops of the shortest
The conditional distribution of the alternate route length, A, given the Euclidean distance, D, preserves the stochastic monotonicity property, i.e., $A \succ D$.

Given this conjecture, application of Cor. 1 yields that the length of the alternate route A is stochastically monotonic in the length of the primary route H, i.e., $A \succ H$.

VII. RELATED WORK

Route salvaging proposed in the context of MANETs exploits partial paths; failed routes are repaired locally at the point of failure if an alternate route is known (cached). Salvaging might be performed for few packets, as is the case with the Dynamic Source Routing protocol (DSR) [23], or for the whole data stream [4], and has been shown, mainly with simulation studies, to improve performance. A first step towards analytical comparison of end-to-end and local route recovery protocols respectively, was presented in [24], yet under a less generic set of assumptions. Finally, hop-by-hop transport for wireless networks has also been recently explored [2]. [3]. Nevertheless, none of these studies addresses the existence of those paths or under which conditions they might be more beneficial than traditional end-to-end approaches, analytically. In fact, the implicit assumption in most of these studies has been that the network is almost surely connected.

It was only more recently that this assumption was relaxed in the context of DTNs [25]. However, the majority of DTN routing protocols rely on single-hop transfer opportunities (“contacts”) and mobility to eventually deliver a message. In a few cases, hybrid approaches that combine elements from both DTN and MANET routing have been proposed. In [10], the authors look into a vehicular network where connected clusters are formed at various locations, with little or no connectivity between them. They propose regular routing to be used within these clusters, while DTN schemes can be used to move messages between clusters when the destination is not locally available. Similarly, in [11] AODV is used when end-to-end connectivity is available, while a node may fall back to DTN forwarding, when an end-to-end path cannot be discovered. Finally, in [26] a Kalman filtering approach is taken to predict the delivery probability (“utility”) of each node in a DTN context, but regular routing is used to query and identify the highest utility node within the cluster. These approaches more formally target Area 3 of the connectivity spectrum discussed in Sec. II. Further, we believe the analysis presented in this
paper could be applied with appropriate modifications to such hybrid solutions.

Along a slightly different line of research, there have been several theoretical studies revisiting the network connectivity dynamics [6], [9], [27], [28]. Whereas the phase transition phenomena for asymptotically large networks had been already studied in [29], [30], more recent studies have focused on more realistic network scenarios and propose metrics that can capture the smoother evolution of connectivity with network density for finite number of nodes. The connectivity index (reliability) in [9] and the giant component in [28], where a lognormal radio model is superimposed on the geometric link model, are two examples of attempts to capture better the partial-connected nature of finite-size networks and assess the extent to which transmission opportunities are presented by them. The remarks in these studies, which are practically in line with our discussion in Sec. II have been the main motivation for looking closer to the regime of partial-connectivity in this paper. Finally, and interesting study and classification of the complete connectivity regime along with the goal to of understanding what is most suitable for each network class can be found in [31].

VIII. CONCLUSION

In this paper, we have shown that a non-negligible regime between fully connected and fully disconnected regime can be defined, namely partially-connected networks, where partial paths of multiple hops often exist and could be taken advantage of to improve performance. DTN schemes usually ignore multi-hop paths altogether and rely on single-hop paths (“contacts”) and predictive forwarding. MANET schemes, on the other hand, require complete end-to-end paths to operate. We have argued here that local recovery mechanisms (“intermediate forwarding”), that keep a packet at the point of path breakage, and locally try to discover an alternate partial route from that point to the destination, can outperform end-to-end mechanisms for a range of connectivity regimes. Specifically, we show analytically that stochastic monotonicity of the expected length of alternate paths given the current path length, is a sufficient condition for intermediate forwarding to stochastically dominate end-to-end forwarding. At the same time, we show that, contrary to intuition, weaker conditions relating current and alternate path lengths are not sufficient to prove the desired dominance.

In future work, we are planning to explore the applicability of our analytical methodology in connectivity regimes where connectivity is close to zero (i.e. end-to-end paths never exist), but reachability is still considerable (Area 3 in Sec. II). Further, we are planning to look in more detail into the protocol-related issues of intermediate forwarding for partially-connected networks, building on the insight acquired by this analytical study.

REFERENCES

