
SaFT: Reliable Transport in Mobile Networks

Simon Heimlicher, Rainer Baumann, Martin May and Bernhard Plattner
Computer Engineering and Networks Laboratory, ETH Zurich

8092 Zurich, Switzerland
{heimlicher,baumann,may,plattner}@tik.ee.ethz.ch

Abstract—End-to-end transport protocols per-
form poorly in mobile environments, primarily due
to the frequent route breaks induced by node
mobility. We present a framework for hop-by-
hop transport protocols and propose a new reli-
able transport protocol: SaFT (Store-and-Forward
Transport). We evaluate its performance in mo-
bile ad hoc networks vis-a-vis TCP. Overall, SaFT
achieves up to 3 times faster delivery of messages
in such networks. We conclude that store-and-
forward protocols are suited well to provide reliable
communication in mobile ad hoc networks.

I. Introduction

Simulation studies [1] show that the standard re-
liable transport protocol of the Internet, TCP [2],
performs poorly in mobile environments because it
fails to respond appropriately to problems at lower
layers such as route failures and link errors. Never-
theless, a large number of new transport protocols
have been proposed that still use the same principles
as TCP, i.e., they perform flow and congestion control
as well as retransmissions from the end points of the
connection. These proposals either employ a heuristic
method to distinguish link failures from congestion
(e.g. [5]) or they let intermediate nodes notify the
source about link failures (e.g. [6]). The similarity
of these proposals to TCP is in part due to the
popularity of this protocol and in part related to
the view that functions should be implemented at
the highest possible layer (End-to-end Arguments [3])
and intermediate nodes should be stateless (Design
Philosophy of the DARPA Internet Protocols [4]).

However, the characteristics of mobile networks
are radically different from those of classical fixed
networks because node mobility leads to frequent
changes of the link topology. The real-world measure-
ments in [7] support this view by showing, how short
link lifetimes are in a mobile network in an office
environment. We conclude from these works that the
end-to-end paradigm of existing transport protocols
should be reconsidered for mobile networks.

In mobile networks, it seems appropriate to include
the intermediate hosts in the forwarding task. Such
hop-by-hop protocols are able to operate effectively
even when end-to-end routes are intermittent. How-
ever, not many hop-by-hop transport protocols have
been proposed to date. One example is Split TCP [8],
which splits long connections at certain intermediate
nodes. A more recent example, the Delay Toler-
ant Networking group [9] also considers hop-by-hop
transport mechanisms (Bundling), but intermediate
nodes are assumed to be reliable.

Due to the lack of research on hop-by-hop trans-
port protocols, we have developed a framework for
hop-by-hop transport protocols following the store-
and-forward principle. This framework provides flow
control, congestion control, and end-to-end reliabil-
ity. With this framework, we have developed SaFT,
a reliable transport protocol for mobile networks.
In simulation studies, we show that this protocol
performs much better in mobile networks than TCP
NewReno. In brief, the main contributions of this
paper are:

• Design and implementation of a framework
for transport protocols following the store-and-
forward principle;

• Development of SaFT, a reliable transport pro-
tocol based on this framework; and

• Validation and performance evaluation of SaFT
in a mobile network vis-a-vis TCP NewReno.

II. The Framework

As discussed in the literature (cf. [1]), primary
causes of poor TCP performance in mobile networks
are packet loss, route changes, and route failures.
Consequently, the design goal of our framework is
to overcome the limitations of traditional end-to-
end transport protocols such as TCP and to (i) pro-
vide resilience to highly dynamic network conditions;
(ii) enable transmission over intermittent end-to-end
routes; and (iii) minimize end-to-end control traffic.

From an application perspective, the framework
provides a reliable byte stream over a highly dynamic
and unreliable network topology. The only require-
ment on the routing protocol is, that it provides the
next hop to the destination if a route is available. The

End-to-end

Hop-by-hop

Source

Node

Destination

Node
Intermediate

Nodes

SAFT

Application

Network

End-to-end Control Flow:

Congestion Control and Reliability

Hop-by-hop Control Flow:

Flow and Congestion Control

Data

Flow

{

Fig. 1. The framework

framework is implemented on two sublayers, as shown
in Figure 1. The hop-by-hop layer runs on every node
and provides per-link flow control and congestion
control. Data is managed in units of fragments, which
only comprise a few IP packets to allow for fine-
grained control over the hop-by-hop data transmis-
sion. The end-to-end layer operates at the end points
of the connection. It performs global congestion con-
trol and guarantees reliable data delivery and can
thus provide a reliable byte-stream interface to the
application-layer, just like TCP. Data is managed
as segments, which are data units comprising a few
fragments. The framework accomplishes the three
fundamental tasks of a reliable transport protocol—
end-to-end reliability, flow control, and congestion
avoidance—independently, as discussed below.

End-to-end Reliability: In a network of unreli-
able nodes, end-to-end reliability can only be ensured
by the end points of the connection; therefore, an
end-to-end retransmission mechanism is provided at
the end-to-end layer of the framework.

Flow Control: Hop-by-hop protocols are able
to control every link along the route separately,
which is a clear advantage over end-to-end protocols,
especially in mobile networks. Our framework offers
a rate-based flow control algorithm that runs at the
sending side of the link. The receiver informs the
sender about the fill state of its buffer in every
acknowledgment packet to avoid unnecessary data
transmission.

Congestion Avoidance: Our framework pro-
vides both a hop-by-hop and an end-to-end conges-
tion control mechanism based on a sliding-window
algorithm. The hop-by-hop congestion control algo-
rithm limits the number of fragments that the source

and any intermediate host is allowed to send to its
next hop without waiting for an acknowledgment.
At the source node, the end-to-end congestion con-
trol algorithm limits the number of unacknowledged
segments on a per-connection basis, which enforces
a hard limit on the total amount of unacknowl-
edged data allowed into the network. Furthermore,
all segment retransmissions are scheduled at the
source with an exponential back-off to guarantee
that the system remains stable and to allow for fair
co-existence with other transport protocols such as
TCP. Since the framework is designed for networks
with intermittent end-to-end routes, it does not have
a connection establishment phase. When a node has
data to send, it immediately begins the transfer
and continues until the congestion control algorithm
detects a problem with the receiver and stops the
transmission.

A. Discussion

Compared to classical packet forwarding, store-
and-forward protocols require additional processing
power and memory for cross connections at every
intermediate hop because fragments that could not
be delivered to the next hop are stored on inter-
mediate nodes and retransmitted a certain number
of times. However, the amount of required buffer
space is limited by the congestion control mechanisms
discussed above, allowing the framework to run with
as little as one packet’s worth of buffer space.

As a performance improvement, intermediate
nodes with free buffer space cache the most recently
received fragments for a limited period of time. This
allows to save bandwidth in the case of retransmis-
sions, as follows. If a node receives a packet that
belongs to a fragment that it has cached already, the
receiver acknowledges the fragment to the sender and
begins retransmission of this fragment towards the
destination.

The performance of the hop-by-hop transfer of
fragments is largely determined by the transmission
rate and the retransmission timeout. Only accurate
and up-to-date round-trip time (RTT) measurements
allow a node to transmit at the correct rate and
to avoid premature retransmission. With our frame-
work, a node shares transmission rate and RTT data
among all connections that use the same next hop,
allowing these connections to operate with the most
recent information. In the remainder of the section,
we discuss how the framework provides resilience

against packet loss, route changes, and route failures.
Packet Loss: Since the framework provides a

hop-by-hop protocol, it handles packet losses locally.
That is, if a packet is lost on any intermediate link,
the node at the receiving side will not acknowledge
the corresponding fragment and the last hop will re-
transmit the fragment. If a fragment acknowledgment
packet is lost and a fragment is retransmitted even
though the receiver has it in its cache already, the
receiver immediately sends an ACK to the sender. In
addition, every fragment ACK contains the sequence
numbers of the last received fragments. Thus, in
general, a fragment can be acknowledged by multiple
independent ACK packets. The same mechanism is
employed for segment ACKs.

It might be argued, that local retransmission is
already provided by most MAC layer protocols and
should not be duplicated at a higher layer. Since the
transport layer protocol has knowledge about the
final destination of every data packet, it is able to
retransmit the packet to a different next hop when
recovering from a link failure; note that this cannot
be accomplished by the MAC layer protocol.

Route Changes: In order to avoid stale packets
from congesting the network, every data and ACK
packet contains a so-called final acknowledgment

number, i.e, the sequence number of the last fragment
received in sequence at the destination. Whenever a
node receives a higher final acknowledgment number,
it updates its status and flushes all fragments with
lower sequence numbers. This effectively controls
the cache sizes at intermediate hops and provides a
redundant acknowledgment channel from the desti-
nation back to the source.

Route Failures: Current ad hoc routing pro-
tocols, such as AODV [10] and DSR [11], strive to
provide either an end-to-end route or no route at
all. As soon as a packet is lost, all routes using the
unreliable link are considered to be down. Since hop-
by-hop protocols do not depend on end-to-end routes,
this functionality is counterproductive. The frame-
work provides a route caching mechanism, allowing
it to continue to use invalid routes for a specifiable
period if the link to the next hop is up.

III. Evaluation

We compare the performance of SaFT with TCP
NewReno [2] in a messaging application running over
a mobile ad hoc network. We run the simulation in
“ns-2”; all nodes use the IEEE 802.11 MAC layer

running DCF with RTS/CTS and the AODV [10]
routing protocol. In an area of 1000m × 3000m, nodes
move according to the random-waypoint model [11]
at a speed of 1–10m/sec. The connection pattern is
as follows: 10 pairs of nodes are chosen randomly.
One node of every pair sends 10 messages of 100kB
to its peer at uniformly distributed points in time
during the first 100 seconds (see [12] for a complete
description of the simulation environment).

We run experiments for network sizes of 20, 30, 40,
and 50 nodes and measure the time until all messages
are transmitted. The average values of 50 seeds are
plotted in Figure 2. With SaFT, the average arrival

 0

 1

 2

 3

 4

 20 30 40 50
 0

 10

 20

 30

Sp
ee

du
p

w
ith

 S
A

FT

A
rr

iv
al

 T
im

e
[m

in
ut

es
]

Number of nodes

Key:
TCP

SAFT
Speedup

 0

 1

 2

 3

 4

 20 30 40 50
 0

 10

 20

 30

Sp
ee

du
p

w
ith

 S
A

FT

A
rr

iv
al

 T
im

e
[m

in
ut

es
]

Number of nodes

Key:
TCP

SAFT
Speedup

Fig. 2. Average message arrival time

time is almost independent of the number of nodes.
In contrast, TCP performs poorly with less than 40
nodes. For instance in the example network with 30
nodes, it takes 17 minutes for all messages to arrive
at the destination nodes with TCP. With SaFT, all
connections finish already after 7 minutes.

In Figure 3, we show in one instance of the sim-
ulation experiment with 30 nodes, how the connec-
tions progress with TCP and SaFT, respectively. In
Figure 3(a), the stop-and-go behavior of TCP in this
experiment becomes obvious. SaFT in contrast trans-
mits data more smoothly and much faster, as shown
in Figure 3(b). Our analysis of the trace files has
revealed that TCP sends data primarily on single-hop
connections, and that typically only one connection
is transmitting at a time. In contrast, SaFT starts to
transmit data much earlier than TCP and frequently
uses multiple single- and multi-hop routes. From this
experiment, we conclude that SaFT is particularly
well suited for networks with low node density.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

Pr
og

re
ss

 [
%

]

Time [s]

Connections
10

9
8
7
6
5
4
3
2
1

Total

(a) TCP

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

Pr
og

re
ss

 [
%

]

Time [s]

Connections
10

9
8
7
6
5
4
3
2
1

Total

(b) SaFT

Fig. 3. Progress of ten connections

IV. Conclusion

In this paper, we have addressed the problem of
reliable data transfer in mobile networks. Due to the
limited suitability of classical end-to-end protocols,
we have considered alternative transport protocols.
Specifically, we have developed a framework that
allows to design, analyze and evaluate transport
protocols following the store-and-forward principle.
With this framework, we have developed a store-and-
forward transport protocol that we call SaFT. This
protocol provides end-to-end reliability, flow control
and congestion control at a very low cost in terms of
memory and bandwidth overhead.

In order to evaluate the performance of SaFT,
we have compared it with a traditional end-to-end
transport protocol in a mobile ad hoc network. We
have found that store-and-forward protocols lead to

up to three times faster delivery of data while at the
same time sharing communication resources much
more fairly among single and multi-hop connections.

We believe that the performance of SaFT justifies
the newly introduced overhead in terms of computing
and memory efforts at intermediate nodes. Moreover,
a store-and-forward transport protocol offers oppor-
tunities to develop new applications for mobile ad
hoc networks. We are implementing SaFT on PDAs
to perform real-world measurement studies.

References

[1] A. A. Hanbali, E. Altman, and P. Nain, “A Survey Of
TCP Over Mobile Ad-hoc Networks,” Institut National De
Recherche En Informatique Et En Automatique (INRIA),
Tech. Rep., May 2004.

[2] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno
Modification to TCP’s Fast Recovery Algorithm,” RFC
3782 (Proposed Standard), Apr. 2004. [Online]. Available:
http://www.ietf.org/rfc/rfc3782.txt

[3] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-To-End
Arguments in System Design,” in ACM Transactions on
Computer Systems, November 1984.

[4] D. D. Clark, “The Design Philosophy of the DARPA Inter-
net Protocols,” in Proceedings of the ACM Symposium on
Communications Architectures and Protocols (SIGCOMM
’88), August 1988, pp. 106–114.

[5] S. Bohacek, J. Hespanha, J. Lee, C. Lim, and K. Obraczka,
“TCP-PR: TCP for Persistent Packet Reordering,” in
Proceedings of the IEEE 23rd International Conference on
Distributed Computing Systems (ICDS 2003), May 2003,
pp. 222–231.

[6] K. Sundaresan, V. Anantharaman, H.-Y. Hsieh, and
R. Sivakumar, “ATP: A Reliable Transport Protocol for
Ad-hoc Networks,” in Proceedings of the ACM Symposium
on Mobile Ad Hoc Networking and Computing (MOBIHOC
2003), June 2003.

[7] V. Lenders, J. Wagner, and M. May, “Analyzing the Im-
pact of Mobility in Ad Hoc Networks,” in ACM/Sigmobile
Workshop on Multi-hop Ad Hoc Networks: from Theory to
Reality (REALMAN), Florence, Italy, May 2006.

[8] S. Kopparty, S. Krishnamurthy, M. Faloutsos, and S. Tri-
pathi, “Split TCP for Mobile Ad Hoc Networks,” in Pro-
ceedings of the IEEE Global Communications Conference
(GLOBECOM 2002), November 2002.

[9] S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V. Cerf,
B. Durst, K. Scott, and H. Weiss, “Delay-Tolerant Net-
working: An Approach to Interplanetary Internet,” IEEE
Communications Magazine, June 2003.

[10] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc
On-Demand Distance Vector (AODV) Routing,” RFC
3561 (Experimental), July 2003. [Online]. Available:
http://www.ietf.org/rfc/rfc3561.txt

[11] D. B. Johnson, D. A. Maltz, Y.-C. Hu, and J. G. Jetcheva,
“The Dynamic Source Routing Protocol for Mobile Ad Hoc
Networks (DSR),” Internet Draft, IETF, February 2002.

[12] S. Heimlicher, R. Baumann, M. May, and B. Plattner,
“SAFT—Store And Forward Transport in Mobile Ad-hoc
Networks,” Communication Systems Group, ETH Zurich,
Tech. Rep. 239, July 2005.

