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Abstract—Physical human mobility has played an important
role in the design and operation of mobile networks. Physical
mobility, however, differs from user identity (name) mobility in
both traditional mobility management protocols such as Mobile-
IP and in new architectures, such as XIA and MobilityFirst, that
support identity mobility and location independence as first class
objects. A multi-homed stationary user or a stationary user shift-
ing among multiple devices attached to different networks will
persistently keep his/her identity but will change access networks
and the IP address to which his/her identity is associated. We
perform a measurement study of such user transitioning among
networks from a network-level point of view, characterizing the
sequence of networks to which a user is attached and discuss
insights and implications drawn from these measurements. We
characterize network transitioning in terms of network residency
time, degree of multi-homing, transition rates and more. We
find that users typically spend time attached to a small number
of access networks, and that a surprisingly large number of
users access two networks contemporaneously. We develop and
validate a parsimonious Markov chain model of canonical user
transitioning among networks that can be used to provision
network services and to analyze mobility protocols.

I. INTRODUCTION

”Mobility” in computer networks takes two distinct forms:
physical (human) mobility among a network’s access points and
base stations, and virtual mobility of a user identity among the
many networks that make up the larger Internet. Physical human
mobility has played a central role in the design and operation of
mobile networks (including cellular, Wi-Fi, and mobile ad hoc
networks) and their protocols for hand-off, intra-network routing
and location management, and more. Consequently, numerous
research studies have developed models of human physical
mobility and used these models in the design and evaluation of
mobile network protocols. Virtual mobility – mobility among
networks – is a more recent concern of protocols such as Mobile-
IP and new architectures such as XIA [8] and MobilityFirst
[16], which aim to provide location independence (mobility
transparency) by separating identifiers (names) from addresses
or network locations. Here, the need to map a user’s identity
to his/her current network location via mobility registration
and lookup/indirection protocols, are central concerns. Thus,
a quantitative understanding of how a user identity transitions
among access networks – the networks through which that
identity is addressed and ultimately reached – is of great interest
for mobility architecture and protocol design and analysis.

Recognizing the potential ambiguity between physical and
virtual mobility, we will refer to a user identity moving
among networks from a network-layer/addressing viewpoint as
transitioning among networks. To appreciate this distinction,
consider an individual, say Alice, often connected to the Internet

via numerous different networks during the course of her day.
She might begin her day reading email on a tablet, connected
to the Internet via a residential DSL or cable network or a
wide-area wireless network; she might later work a bit from
home using a computer connected via Ethernet to her residential
network and then later connect wirelessly via a smartphone to
her wide-area wireless network service provider as she bikes
or drives to work. At work, Alice connects via the company
network, but also uses a smartphone. At the end of the day, her
transitioning among networks is repeated in reverse. Together,
these networks might be considered Alice’s set of frequently
used “home” networks. When traveling, Alice connects via a
smartphone’s wireless provider network and via airport, airplane,
cafe, hotel and remote institutional networks. Indeed, we see
that the identity that is “Alice” connects to the Internet via
many different networks over time and is sometimes connected
using different devices on different networks at the same time.

A user’s transition between networks can occur in a number
of different scenarios: (i) a user might detach from one network
and attach to a new network (e.g., a user explicitly disassociating
from one wireless network and then associating with a different
wireless network); (ii) a user with multiple devices1 might
move his/her activity from a device attached to one network
to another device attached to a different network, or use both
devices concurrently; we will refer this latter as a user being
“contemporaneously connected” to two (or more) networks; (iii)
a user with one device with multiple NICs may change the
interface being used, or use multiple NICs on the single device
contemporaneously (which we believe is rare); (iv) a user may
connect to a VPN, thus changing its network-visible IP address.

In this paper, we perform a measurement study of user-
transitioning among networks and discuss insights and implica-
tions drawn from these measurements. Our study thus differs
from previous mobility studies that have developed models of a
single device’s changing MAC or IP addresses while physically
moving between access points or base stations. Based on these
measurements, we also develop and validate a parsimonious
Markov chain model of canonical user transitioning among
networks. Our measurement study, conducted using two sets
of IMAP server logs (a year-long log of approximately 80
users, and a four-month log of a different population of
more than 7,000 users) quantitatively characterizes network
transitioning in terms of transition rates among networks,
network residency time, degree of contemporaneous connection

1The use of multiple devices is increasing rapidly. The Pew Internet Research
Project [15] notes that in addition to traditional Internet access via computers,
58% of Americans own a smartphone, with approximately 50% of these
users using a smartphone as their primary Internet-connected device. 43% of
Americans own a tablet, a thirteen-fold increase in ownership over four years.
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to multiple networks, and more. We find that users spend
the majority of their time attached to a small number of
access networks, and that a surprisingly large number of users
access two networks contemporaneously. We also show that
our Markov chain model of a canonical individual user, in spite
of its many simplifying assumptions, can accurately predict
aggregate transition rates, the degree of contemporaneous
multi-homing, and other key network-transitioning performance
metrics for an aggregate population.

Our measurements provide quantitative insight into the
location management signaling overhead needed by modern and
proposed name/address translation and location management
protocols; our models provide the ability to design, dimension
and analyze such systems. More generally, we believe that
while physical mobility and the design of link-layer and intra-
subnetwork handoff protocols are relatively well-understood,
the behavior, modeling and measurement of users transitioning
among networks and the design of protocols for managing that
mobility at global scale are much less well-understood. This
paper is an important step in deepening that understanding.

II. MEASUREMENT METHODOLOGY

In this section we first discuss the challenge of measuring
user-transitioning at large scale and our decision to use IMAP
logs to do so. We then provide details of the IMAP logs
themselves and discuss the set of networks visited by users in
our logs. We conclude this section with a discussion of how
we estimate user session lengths based on log data.

A. Why IMAP mail access logs?

Measuring user mobility between networks is itself a
challenging task. Measuring network connectivity directly
at the end user requires a population of users willing to
install software on each of their network-connected devices
(e.g., laptop, home/office desktops, tablet and/or smartphone),
periodically monitoring/logging network connectivity on all
interfaces on all devices, and then collecting measurement data.
In addition to the difficulty of finding and managing such a user
base, the task is technically complicated by concerns regarding
battery drain for monitoring connectivity on mobile devices. For
these reasons, a more centralized, server-based approach might
seem preferable. In particular, since a client’s connection to a
server provides that client’s IP address, the (possibly changing)
access network used by each of the server’s multiple clients
can thus be easily logged at a server.

Yet there are also many challenges associated with server-
side measurement of user transitioning among networks. Each
server implements a single service/application and each user
runs many services and applications. Monitoring all service
and application servers is impossible - there are far too many
servers, and many commonly-accessed servers are proprietary.
Moreover, a user invoking multiple applications has a different
“identity” in each application; correlating a user’s identity on
one application with his/her identity on another application is a
difficult research problem [6]. From a practical viewpoint then,
we ideally need a server application that (i) is frequently used
by an online user, (ii) can be monitored at a non-proprietary
server, and (iii) provides both a user “identity,” so that the same
user can be tracked across multiple sessions, and the network
address from which that identified user accesses that server.

Although no single application server meets this ideal, we
believe that an IMAP server [4] is a compelling choice. Email
checking, polling and delivery all create entries in the IMAP
server’s log containing an associated client IP address, as well
as a client’s identifier (i.e., the email account); the email account
typically remains the same across a user’s devices. A user who
accesses the IMAP server from a desktop while at work, and
then from a mobile device while commuting, and then from a
laptop at home will create IMAP logs evidencing transitions
from office network to cellular provider network to home
access network. Although many e-mail clients periodically and
automatically access their IMAP server while online (providing
a rich source of IMAP data), not all clients do so. Consequently,
using IMAP logs to trace a user’s transitioning among access
networks may miss a network transition or underestimate the
amount of time spent in a network. And email is indeed but
one application (albeit popular one). Thus, we can think of our
results here informally as a lower bound on the actual amount
of network-transitioning performed.

IMAP logs can be also used to indicate a multi-homed user,
or a user contemporaneously belonging to multiple networks
via multiple devices. In the former case, if the user with a single
device accesses the IMAP server using multiple NICs connected
to different networks, the multi-homed IMAP accesses via these
different client IP addresses (and networks) will be evidenced
in the IMAP log. In the latter case, a user accessing the IMAP
server from multiple devices (e.g., working and reading email on
laptop or PC, while also having email pushed to a smartphone)
within the same period of time will have IMAP accesses via
multiple contemporaneous connections during this period of
time evidenced in the IMAP logs.

B. IMAP log collection

Fig. 1. CDF of the average number of IMAP entries per day over all users.

For this study, we collected two sets of traces from IMAP
servers located at the University of Massachusetts Amherst.
The CS-IMAP set contains logs from IMAP servers in the
Computer Science Department from Apr 14, 2013 to Feb
22, 2014; the CS-IMAP has a population of 81 users mostly
consisting of CS faculty and staff members. The OIT-IMAP set
contains approximately four months of logs from IMAP servers
that supports a mail service for university students (primarily),
faculty and staff that is separate from the CS mail service. The
OIT-IMAP has a campus-wide user population of 7,137 users;
these traces were taken from Dec 1, 2013 to Mar 25, 2014. The
total number of CS-IMAP and OIT-IMAP log entries per user
over the measurement ranged from 2 to 79,392, and from 1 to
1,490,473, respectively. Fig. 1 plots the CDF of the average
number of daily IMAP entries per user and shows that users
in CS-IMAP (mostly faculty members) tend to access mail
servers more frequently than OIT-IMAP (mostly students).
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Each trace consists of a series of individual IMAP log
entries stored by syslog [5], recording a user’s e-mail activities
including signing into the mail server, checking the INBOX,
deleting messages, and unilateral server decisions to close (idle)
connections. We processed only a user’s sign-in logs which
allowed us to extract the following pieces of information for
each entry: (i) user’s account ID - we consistently anonymized
a user’s account ID (email address) using SHA2-hashing for
privacy purposes, (ii) timestamp - the time at which a user signs
into the IMAP mail server to poll, check, or retrieve email,
and (iii) a client-side IP address - this is the user’s (client-side)
IP address when accessing the IMAP server2.

Given an IP address, we determined the user’s IP prefix
network, Autonomous system number (ASN), and network
domain ownership via whois using whois.cymru.com [1].
Information at whois.cymru.com is updated every 4 hours
from the regional registries including ARIN, RIPE, AFRINIC,
APNIC, and LACNIC. The CS-IMAP set contains 1,405 unique
IP prefixes and 387 unique ASNs, and the OIT-IMAP set
contains 9,016 unique IP prefixes and 1,777 unique ASNs. The
network information for two IP addresses in the CS-IMAP
and 63 IP addresses in the OIT-IMAP was unknown, but the
number of IMAP logs generated from such IP addresses was
negligible; these entries were excluded from our analysis.

C. IMAP traces: network information

Fig. 2. CDF of the number of observed IP prefixes associated with an ASN
over all users.

Fig. 2 shows the CDFs of the number of observed unique IP
prefixes associated with an ASN over all users in the CS-IMAP
and the OIT-IMAP sets. Fig. 2 shows that approximately 61%
and 57% of ASNs had only a single observed IP prefix in
the CS-IMAP, the OIT-IMAP, respectively. In the traces, the
following ASN and IP prefix information of frequently visited
service providers have been observed (we will investigate the
length of time a user is resident in an IP prefix or ASN network
in Section III). AT&T, Sprint, T-Mobile, and Verizon wireless
are mobile access service providers. Comcast, Charter, Cox,
Time Warner, and Cablevision are residential wired Internet
service providers (e.g., cable and DSL access networks); the
Hughes network supports a satellite Internet service used in rural

2Users in the CS-IMAP set occasionally accessed mail via a departmental
web-based server, rather than directly from a client email application. In this
case, the user’s logged IP address is recorded in the IMAP log as 127.0.0.1;
we analyzed the server’s web logs to determine the client address of the user
browser associated with this IMAP access. Only 1.6% of all IMAP web-based
log entries could not be identified due to missing web logs; those entries were
excluded from our analysis. VPN access to the IMAP servers is not required.
Anecdotally, we believe VPN access is used primarily for accessing library
and other restricted campus resources.

communities lacking wired and cellular broadband service. The
UMass Amherst network is part of the Five Colleges (AS1249)
network. SAS in the CS-IMAP (a DSL and Wi-Fi service
provider in France) and Unicom in the OIT-IMAP (a mobile
service provider in China) were used for a non-negligible
amount of time in our measurements.

Fig. 3. CDF of the number of unique ASNs visited daily per user over all
users.

Fig. 3 plots the CDF of the number of unique ASNs visited
daily per user over all users, indicating that users in both OIT-
IMAP and CS-IMAP access at most four unique ASNs in a
day, but users belonging to CS-IMAP (mostly faculty members)
access more ASNs than OIT-IMAP (mostly students).

Fig. 4. CS-IMAP. Cumulative number of unique ASNs accessed by all users
over time.

Fig. 4 plots the daily cumulative numbers of unique IP
prefixes and ASNs accessed by all users over time. These
figures indicate that the cumulative number of unique IP prefixes
and ASNs each increase roughly linearly over time; the slopes
of two curves during vacations (when users would be out of
town more frequently) are steeper compared with the slope
during the academic term. This constant increase in the daily
number of new networks accessed (after the initial startup
period) was initially surprising, as we had expected that users
would generally access the same set of networks over time.
We’ll see later that a user typically does indeed spend most
of the time in the same (relatively small) number of networks
over time, but does visit new networks outside of this set of
common networks at a roughly constant rate, resulting in the
positive slope in Fig. 4.

D. From IMAP log data to sessions

We use the notion of a time window to determine intervals
of time during which a user is connected to a network.

Definition 1: Time is divided into consecutive time win-
dows, each of length ∆t. A session is defined as a series of
consecutive time windows, each of which has one or more
IMAP log entries from the same network (distinguished by
either its IP prefix or ASN).
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By Definition 1, two IMAP log entries in the same time window
that have different IP addresses but the same IP prefix (or the
same ASN) would be regarded as belonging to the same session.
Our measurements indicate that a user may be also connected
to more than one network during a window of time.

Definition 2: Given time window of length ∆t, a multi-
sessioned time window for a user is one in which that user
has IMAP entries from two or more different networks.

Choosing a value for ∆t for session identification via
Definition 1. If we choose a small time window value, this
would break a user’s single session into multiple distinct
sessions separated by empty ∆ts having no IMAP logs entries.
If a user was indeed connected during these empty ∆t intervals,
then we would overestimate the amount of user network-
transitioning. Conversely, if the time window is too large,
intervals of time during which the user disconnects and then
reconnects to that same network would be coalesced into
a single session, thus underestimating the amount of user
transitioning. This dilemma is often faced when reconstructing
user session behavior from discrete log entries [3, 13]. We
choose the length of the time window ∆t by observing the
number of sessions as a function of ∆t, as discussed below.

Definition 3: Given time window ∆t, define ρ as the
fraction of time windows that (i) contain no entries; (ii) fall
between two time windows that contain IMAP entries, and (iii)
in the ground truth case, the user remains connected to the
network (even while producing no IMAP entries).

(a) CS-IMAP.

(b) OIT-IMAP.

Fig. 5. Aggregate number of sessions over all users.

Fig. 5 plots the total number of all users’ ASN-based
sessions3 as a function of a time-window length for different
values of ρ. The black curve in Fig. 5a shows that the number
of sessions with ρ = 0 in CS-IMAP initially decreases sharply
with increasing values of ∆t, and then, at around a time-
window length of 15 minutes, begins decreasing more slowly.
Fig. 5a’s red curve plots that the hypothetical number of sessions
with ρ = 0.1 for different time-window sizes in CS-IMAP.

3A comparison of using IP prefix vs. ASN distinctions to identify the number
and length of sessions indicates that there is not a significant difference between
IP prefix-based and ASN-based session lengths. Thus we only show ASN
results.

The red curve is significantly lower than the black curve in
the inital region, and then shows a knee of the curve at 15
minutes; this pattern was also found for different values of
ρ. Similarly, the knees of the curves in OIT-IMAP appears at
approximately 20 minutes as shown in Fig. 5b. We also noted
that approximately 97% of the time intervals between a user’s
two consecutive IMAP log entries in CS-IMAP were less than
or equal to 15 minutes, and approximately 82% of the time
intervals between a user’s two consecutive IMAP log entries
in OIT-IMAP were less than or equal to 20 minutes.

(a) CS-IMAP.

(b) OIT-IMAP.

Fig. 6. Aggregate number of multi-sessioned time-slots over all users.

A similar analysis can be applied to the case of a user being
contemporaneously connected to multiple networks. Fig. 6 plots
the total number of all users’ ASN-based multi-sessioned time
windows for different time-window sizes. Fig. 6 shows that
the number of multi-sessioned time windows in CS-IMAP
increases until a window length of 15 minutes and then flattens
out and the knee of the curve appears at 20 minutes, the same
knee location found in the Fig. 5. Thus, a user who has been
connected to multiple networks is likely to be completely offline
for an amount of time greater than the time interval length at
the knee. We will thus choose 15 minutes in CS-IMAP and
20 minutes in OIT-IMAP to be the length of the time window
and identify user sessions accordingly via Definition 1. We will
only show the results with ρ = 0 in our subsequent discussion.

III. MEASUREMENT ANALYSIS AND FINDINGS

In this section, we present and discuss our measurement
results regarding user residence time in various networks and
multi-sessioned behavior.

A. Network residence time

House Comcast (AS7015, AS7922, AS33651, AS33668), Charter (AS20115), Cox
(AS22773), Hughes (AS6621), Time Warner (AS11351), Cablevision (AS6128)

Work Five colleges AS (AS1249) (including UMass Amherst)
Mobile Verizon (AS22394, AS701, AS6167), AT&T (AS20057, AS7018), T-Mobile

(AS21928), Sprint (AS3651)
TABLE I. HOUSE, WORK, AND MOBILE CATEGORIZATION.
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Let us first consider the aggregate network residence time
over all users spent in various networks. Table I defines
house, work, and mobile networks whose constituent ASNs or
ISPs are accessed by users for more than 0.5% of aggregate
network residence time. The MISC category, which includes
all other network domains observed in our logs, may thus
include rarely-used residential wired service provider or mobile
access provider ASNs that account for negligible fractions
of network residence time. Broadly, we may consider the
house/work/mobile networks as a user’s “home” networks and
the remaining MISC networks as a user’s “visited” networks.

Fig. 7. OIT-IMAP. Time series plot of daily fractions of network residence
times over all users.

Fig. 7, 8 plot the daily fraction of aggregate residence
time spent in house, work, mobile and MISC ASNs over all
users for OIT-IMAP, CS-IMAP respectively. Given that the
house, work and mobile networks are collectively constituted
by only 17 out of the 1,858 ASNs observed in CS-IMAP and
OIT-IMAP, Fig. 7, 8 show that users spend the majority of
their time (approximately 80% through a measurement period,
and in particular more than 90% during fall semester in CS-
IMAP) resident in only a small number of networks. We also
observed that just two ASNs (Comcast AS7015, and Five
colleges As1249) account for more than half of the overall
residency time in OIT-IMAP and CS-IMAP, and that the ten
most common ASNs collectively account for approximately
85% (for OIT-IMAP) and 90% (for CS-IMAP) of the overall
residency time, confirming the observation that the lion share
of aggregate user time is spent in a relatively small number of
networks.

Fig. 7, 8 also show seasonality corresponding to the
academic calendar; a decrease in work network occupancy
and a concomitant increase in MISC network occupancy
during vacations; conversely, an increase in house network
occupancy and work network occupancy but a decrease in
MISC network occupancy during semesters. Not surprisingly,
Fig. 7, 8 also show per-week periodicity for house and work
network residence times, with the percentage of time in work
networks higher on workdays and less on weekend days, and
the percentage of time in house networks higher on weekend
days and less during workdays.

We also observe hourly and weekly patterns in the aggregate
average and maximum for hourly and weekly network residence
times (shown as box plots with whiskers in Fig. 9a and 9b
over all users in OIT-IMAP. Fig. 9a shows that users tend to
be connected approximately 10 minutes on average and up to
35 minutes per hour. Network residence time during daytime
is longer than during nighttime, with an increase of residence
time in work networks during the day. Fig. 9b shows that users
are connected approximately 5 hours a day on average up to
10 hours per day. Network residence time during workdays is

(a) Hourly network residence time.

(b) Weekly network residence time.

Fig. 9. OIT-IMAP. Box plot with whiskers with average and maximum for
hourly and weekly network residence time over all users.

longer than during weekend days, with an increase of residence
time in work networks during the week. Similar hourly and
weekly results are also found in CS-IMAP.

Fig. 10. CS-IMAP. pdf of the fraction of the (three) longest residency ASNs’
residence times to the total residence times.

Let us now turn our analysis from the aggregate to the
individual, and investigate the fraction of an individual user’s
residence time spent in the single network in which it is most
often resident, as well as in the three networks in which together
it is most often resident? Fig. 10 plots the distribution (over all
users) of the fraction of time that a user in CS-IMAP spends
resident in the network in which it is most often resident (grey
line with triangle points), and in the three networks in which
together it is most often resident (black line with triangle points).
The black curve indicates, for example, that approximately 75%
of the users spend between 90% and 100% of their time in their
top three networks, and that nearly 20% of the users spend
between 80% and 90% of their time in their top three networks.
Thus we see that individual users generally also spend the lion
share of their residency time in just a few (e.g., three) networks.
A much smaller fraction of the users spend their time in just
one network - the gray curve indicates that roughly 25% of the
users spend 90% to 100% of their time in their most commonly
resident network. Similar results are also found in OIT-IMAP.

B. User’s multi-sessioned behavior

Having considered a user’s connectivity to individual
networks, let us next examine a user’s contemporaneous
connection to two or more networks. In our measurements,
we observe that 99% of the ASN-based multi-sessioned time
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Fig. 8. CS-IMAP. Time series plot of daily fractions of network residence times over all users.

windows in OIT-IMAP and 99.5% of the ASN-based multi-
sessioned time windows in CS-IMAP consist of only two ASNs.

Fig. 11. pdf of ASN-based multi-session time per user.

Fig. 11 plots the fraction of users (y-axis) who spend a given
fraction of their time (x-axis) connected to multiple networks
in CS-IMAP and OIT-IMAP. Fig. 11’s gray bar indicates, for
example, that 20% of the users in CS-IMAP were always
connected to a single network (when online). Approximately
70% of the users spent less than 10% (but greater than 0%)
of their time multi-sessioned and approximately 7% of users
were multi-sessioned between 10 and 20% of their time online.
Fig. 11’s black bar shows that approximately 50% of the users
in OIT-IMAP were always connected to just a single network.
Overall, however, we found the amount of multi-sessioned time
to be much higher than we would have expected, suggesting
that contemporaneous connectivity to multiple networks should
not be considered “outlier” behavior.

A deeper investigation in the multi-sessioned time windows
revealed three common scenarios, with the following potential
causes of multi-sessions:

Fixed and mobile networks. 55% of multi-sessioned time
windows in OIT-IMAP and 51% in CS-IMAP consisted of a
fixed (residential or Five colleges) and a mobile network (as
defined in Table I’s mobile category). (i) These scenarios could
correspond to the cases of a user carrying multiple devices or
a single device with multiple NICs being contemporaneously
connected to different networks (e.g., a laptop connected to a
wired network and a smartphone connected to a cellular data
network). (ii) Network transitions between fixed and mobile
networks within a time window could also have resulted from
a user’s switching his/her devices.

Fixed networks across different ISPs. 17% of multi-sessioned
time-slots in OIT-IMAP and 27% in CS-IMAP consisted of
two fixed networks (residential and Five colleges) with little
overlap in their physical footprints - the Five colleges network
is generally confined to campus locations. (i) Contemporaneous
access to these two networks in the same time window could

have resulted from a user physically moving from one network
to another (e.g., office to home or vice versa) or (ii) could also
have resulted from emails being automatically by a user device
in a different physical location that the user him/herself, or from
VPN access to the Five colleges network via the residential
network.

Network transitions within the same ISP. 6% of multi-
sessions in OIT-IMAP and 4% in CS-IMAP show multiple
networks access from two ASNs owned by a single service
provider such as SAS, Verizon, AT&T and Comcast. This may
correspond to the case of a user who is either physically moving
and connecting to different 3G/4G or 802.11 base stations while
in motion, or a stationary user connecting to different base
stations within a time window.

Let us conclude this section by further dissecting the cases
above to determine which multi-sessioned time windows might
result from a user’s transition between networks (e.g., as
indicated by a series of IMAP log entries from one network
followed by a series of IMAP log entries from another network
during a time window) versus a user switching back and
forth between networks in that time window. Let St2

t1 be a
sequence of networks to which a user is connected from t1
to t2. For instance, if a user at t generates three consecutive
IMAP log entries via network B followed by one IMAP log
entry via network A, then St

t = {B,A}. We determine whether
a user performs a network transition or is contemporaneously
connected to multiple networks at multi-sessioned time window
t based on the following proposition.

Proposition 1: Given a user’s IMAP log entries over three
consecutive time-slots from t− 1 to t+ 1, a user is regarded
as performing a network transition at multi-sessioned time-slot
t if St

t = St+1
t−1 .

For example, suppose that St−1
t−1 = {A}, St

t = {A,B}, and
St+1

t+1 = {B}. Then we derive St+1
t−1 = {A,B}, and thus

St
t = St+1

t−1 , implying a network transition during the time
window. On the other hand, suppose that St−1

t−1 = {A}, St
t =

{A,B}, and St+1
t+1 = {A}. In this case, St+1

t−1 = {A,B,A},
and thus St

t 6= St+1
t−1 , indicating the user does not perform a

network transition at t; instead we interpret this as there being
one session associated with network A from t − 1 to t + 1,
contemporaneously existing with another session associated
with network B during time window t.

Using Proposition 1, we observed that users performed
network transitions in 12% of multi-sessioned time windows
in OIT-IMAP and CS-IMAP, suggesting that a user is more
likely to be using multiple networks contemporaneously during
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a multi-sessioned time window rather than being the process
of transitioning between networks in a single time window.

IV. EMPIRICAL INVESTIGATION OF THE MARKOV MODEL

In this section, we develop a parsimonious discrete-time
Markov chain model of individual user transitioning among
networks. This model can be used to design, analyze and
provision protocols and services that support mobility (e.g.,
Mobile-IP home and foreign agents, or next generation services
such as MobilityFirst’s GNS [16]). A model of individual user
behavior is particularly valuable, as it can be easily used to
scale up evaluation workloads. After presenting our model,
we validate how well performance measures determined via
the aggregation of individual user-level models (in particular,
signaling overhead due to user-transitioning between networks)
match those determined from the traces.

A. Markov Chain Model of User-Centric Network Transitioning

We develop a parsimonious discrete-time Markov chain
model of individual user network-transitioning. Our unit of
discrete time is the time window discussed in Section II.
The Markov chain states encode enough state information to
compute the cost of a user’s signaling at each time-step. Let
Xt be the number of new networks to which a user is attached
at time t, with respect to time t− 1. The first dimension of the
Markov chain tracks the value of Xt, which will be used to
quantitatively compute signaling overhead induced as a user
transitions among networks, as we will discuss below. Let Yt

be the number of networks to which a user is attached at time
t. The second dimension of the Markov chain tracks the value
of Yt, which will be used to quantitatively compute signaling
overhead induced when a user detaches from a network, as we
will discuss below.

Xt and Yt may take value {0, 1, ∗}, where ∗ denotes
two or more networks contemporaneously connected at t; for
simplicity, we do not distinguish the case of more than two
contemporaneous sessions from the case of exactly two such
sessions, since approximately 99% of multi-sessioned time
windows consist of only two network domains in our traces, as
discussed in Section III. Our model can be easily extended to
cover the more general case. Our Markov model thus consists of
six states, {(0, 0), (0, 1), (1, 1), (0, ∗), (1, ∗), (∗, ∗)}. The model
has a stochastic transition probability matrix P = [pij ] where
pij = Pr{(Xt, Yt) = j|(Xt−1, Yt−1) = i} and

∑
j pij = 1.

These transition probabilities will be determined empirically
from our traces.

The overall signaling cost from the user to a network-
wide mobility management service (e.g., a Mobile-IP home
agent, or the MobilityFirst GNS) on a state transition at t− 1
to t, is computed as follows. Let A be the signaling cost
generated when a user joins a new network, and let D be the
signaling cost generated when a user departs from a network.
(For simplicity, we will not consider signaling costs in the
reverse direction from the management service to the user,
although these can be easily included in the model.) In the
case that network detachment is explicitly signaled, COt is
computed by COt = A·Xt+D·(Yt−1−(Yt−Xt)). In the case
that network detachment is implicitly signaled by attachment
to a new network, COt is computed by COt = A ·Xt.

B. Trace properties

(a) Xt.

(b) Yt.

(c) user population.

Fig. 12. OIT-IMAP. Time series plots of “daily” aggregate cost of X , Y and
daily user population over all users (using IP prefix distinction).

We investigate the properties of our CS-IMAP and OIT-
IMAP traces. We first extract subtraces from the CS-IMAP
and the OIT-IMAP traces and bisect each subtrace into the
training phase (also called phase 1) and the validation phase
(also called phase 2), which will be used in model parameter
estimation and model validation, respectively.

CS-Fall subtrace. The CS-Fall subtrace has 79 users during
the Fall 2013 semester (using IP prefix distinction) and its
phase 1 and phase 2 consist of data from Sep 3rd to Oct 25th
and from Oct 26th to Dec 16th, respectively.

OIT-Spring subtrace. Fig. 12 shows the time series plots of
daily aggregate values of Xt, Yt, and daily population of users
producing IMAP logs over 7,137 users in OIT-IMAP (using
IP prefix distinction). Unlike the CS-Fall subtrace whose daily
aggregate values of Xt and Yt are almost stable over a semester
from its time series plot. Fig. 12a, b show a downward drift,
particularly during the first half of the trace, likely resulting
from the change in user population previously observed in
Fig. 12c. Since our goal is to model the system in steady state,
we thus only consider the subtrace during Feb and Mar for
modeling, with the phase 1 and phase 2 consisting of data
from Feb and Mar, respectively. This subtrace has 5,793 users
generating IMAP logs.

For each subtrace, we derive one set of aggregate values of Xt

over all users, and another set of aggregate values of Yt over
all users (using IP prefix distinction), sampled at 15 minutes
(for CS-Fall) or at 20 minutes (for OIT-Spring).

Patterns of ACFs. The sample autocorrelation function
(ACF) measures the degree of correlation between data at
varying time lags (denoted by n), detects any trends and
periodicity in a data series, and is also used to check the
randomness of data. If random, the autocorrelation should be
near zero for any and all time-lag separations. Fig. 13 plots the
ACFs of values of Xt, Yt for the OIT-Spring subtrace. Fig. 13a,
b demonstrate that Xt and Yt in the OIT-Spring subtrace have
daily (n = 72) and weekly (n = 504) periodicity, and drop to
near zero correlation at lag 20 so that Xt and Yt are considered
independent at around every seven hours (20·20 minutes).
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(a) Xt. (b) Yt.

Fig. 13. OIT-Spring. Autocorrelation function for Xt and Yt.

Similar periodicity and seven-hour independence results were
also encountered in CS-Fall trace, but with lower amplitudes.

Testing for Stationarity. We check the subtraces them-
selves for stationarity using the KPSS test[12]. The KPSS
assesses the null hypothesis that data is stationary over a range
of time lags. The tests at the 1% significance level suggest that
Xt and Yt data in OIT-Spring are stationary for n > 0, but Xt

data in CS-Fall is stationary for n > 1 and Yt data in CS-Fall
is stationary for n > 4.

C. Model estimation and validation procedure

We use the observed relative transition rates during the
training phase to estimate the transition probabilities of our
Markov chain model. To determine how well our Markov chain
model predicts user behavior we will compare signaling costs
determined by the model with those found in data from the
validation phase. We proceed as follows:

1) Transition probabilities for the Markov Chain Model.
Using the training phase data, we derive the transition prob-
abilities for our Markov Chain model of a canonical user by
counting the number of times that U users move from state i
to state j per time-step and then normalize these counts so that
the sum of the transition counts out of each state equals 1. This
gives us our empirical transition probability matrix, P̂ = [P̂ij ].

2) Generating a sequence of synthetic transitions between
states for a population of U users. For each of the U users,
we start from state (0, 0) and generate a next state using the
transition probabilities P̂ . We repeat this process for φ time-
steps (5,000) and then generate a sequence of length φ of state
transitions made by the U users.

3) Determining the signaling cost for U users. For each time-
step, we compute the aggregate signaling cost of the U users,
using COt as in the previous subsection; for simplicity, we
assume that users explicitly signal network detachment, with
A = D = 1. Then we compute the distribution of signaling
cost for the U users.

4) Model validation. Once the baseline distribution is built,
we test how well our model predicts the number of signaling
messages generated per time-step for the U users. To validate
our model, we compare the model-predicted values (whose
state transition probabilities were derived from training phase
data) with the empirical distribution found in validation phase.

D. Prediction with aggregate user population

CS-Fall. Fig. 14a plots the pdf of the model-predicted and

(a) pdf with bin size = 2 (b) Model vs. Observed

Fig. 14. CS-Fall. Aggregate cost over all users.

the observed aggregate cost over all users for the CS-Fall data
set. Fig. 14b shows the Q-Q plot of the model cost data on
x-axis versus the observed cost data on y-axis; a data point
(x,y) on the Q-Q plot corresponds to one of the quantiles of the
distribution plotted on the y-axis against the same quantile of
the distribution on the x-axis; the plot has a red reference line
through the origin with slope 1; points denoted as + should lie
roughly on this line if the x-axis and y-axis data come from
the same distribution. Fig. 14 confirms that the model cost and
the observed cost datasets come from a Gaussian distribution4

and the model fits the observed data well based on the linearity
evidenced in Fig. 14b, while passing the chi-square goodness-
of-fit test with 5% significance level.

Recall that our model for U users aggregates the results
from U independent user-level models. Since the ACFs of
empirical values of Xt, Yt show both positive and negative
correlation at different time lags in Fig. 13, it is not surprising
that signaling costs match the least well at the lower and upper
extremes of the distributions in Fig. 14a. If the tail distribution
is of interest (e.g., for provisioning system resources at the
95% workload maximum), interesting future work would be to
develop a model that more accurately matches this tail behavior.

E. Prediction with user clusters

(a) all users (b) heavy user cluster

Fig. 15. pdfs of aggregate cost over all users vs. over a heavy user cluster

OIT-Spring. Fig. 15a, b plot the pdfs of the model-predicted
and the observed aggregate cost over all users and over a heavy
user cluster for the OIT-Spring subtrace, respectively. Fig. 15a
shows that the Gaussian distribution of cost predicted by the
aggregation of individual user models does not fit the observed
multi-modal data, which shows three distinct peaks. Visually,
Fig. 15a suggests that costs might better be modeled as a
mixture of Gaussian distributions.

4also validated using the Q-Q plot of the model vs. the randomly generated,
independent standard normal data
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Then what might each component of the mixture correspond
to, and how many distributions should be mixed? To answer
this question, we performed a clustering analysis, since a user’s
affiliation is not known in our OIT-IMAP traces. We partitioned
the 5,793 users in OIT-Spring subtrace into K clusters based
on their signaling cost, using Expectation Maximization (EM)
clustering. We estimate the number of clusters that best
represents the subtrace via WEKA EM clustering’s 10-fold
cross-validation [17]. With regard to an average daily cost of a
user, the curve of the log likelihood of the cross-validation data
as a function of the number of clusters suggests four clusters.

Fig. 15b only plots the pdf of the model-predicted and the
observed aggregate cost over the heavy user cluster consisting
of 721 users (12% of user population) with the highest cost (a
mean cost of 13.62)5. Fig. 15b shows that the cost distribution
for the resultant four-cluster model is closer to its empirically
observed distributions when compared with the single cluster
(Fig. 15a) case, although the clustered models do not pass
the chi-square goodness-of-fit test. On the other hand, our
handpicked heavy user cluster consisting of 100 users having the
highest cost (a mean cost of 41) shows a good fit while passing
the chi-square goodness-of-fit test with the 5% significance
level. These results suggest that proper clustering can improve
model performance in predicting signaling costs, a topic we
plan to pursue in future research. In the course of our research,
we also compared model-based and empirically-observed state
occupancies of OIT-Spring, showing good agreement for both
the aggregate population of users and for clustered users.

V. RELATED WORK

Numerous studies have characterized physical human move-
ment using empirical datasets and discussed the impact of
physical user mobility patterns on network performance and
design. Human mobility traces have been collected from diverse
access networks such as WLAN [2, 9, 11], Bluetooth networks
[2], and cellular networks [7, 10, 14]. Research using Wi-Fi
access datasets has been done in a single, physically-scoped
network domain, such as a campus or enterprise, thus focusing
on user mobility within that limited physical domain. In this
sense, cellular data might more fully model human mobility
(since users typically carry their cellular phones); such cellular
data, however, is typically proprietary. But individual WiFi and
cellular traces by definition only include data from an individual
type of network, and have not considered contemporaneous
residence within multiple networks nor transitions among
networks. More generally, we believe there is an important
distinction to be made between physical mobility and mobility
among networks, as discussed in Section I; our work is the first
to characterize and model mobility among networks (which we
have referred to as network transitioning). On the other hand,
[3, 7, 14] have related human mobility patterns to network
resource use in Wi-Fi access points or cellular network base
stations. [7, 14] have found that the extent of users’ physical
mobility is low and concentrated among a small number base
stations, with infrequent visits to other base stations in that
network. Those conclusions, however, are based on physical
mobility within a single network.

5The detailed results on EM clustering are found in [18]

VI. CONCLUSION

In this paper, we performed a measurement study of
user transitioning among networks and discussed insights and
implications from the measurements. Our measurement study,
conducted using two sets of IMAP server logs of populations of
approximately 80 users and more than 7,000 users, characterizes
user network transitioning in terms of transition rates, network
residency time, and degree of contemporaneously resident
network domains. Based on these measurements, we also
developed and validated a parsimonious discrete time Markov
chain model of canonical user transitioning among networks.
Our measurements and models provide quantitative insight
into the location management signaling overhead needed by
modern and proposed name/address translation and location
management protocols; our models provide the ability to design,
dimension and analyze such systems.
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